Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus

Abstract

A CENTRAL assumption about long-term potentiation in the hip-pocampus is that the two classes of glutamate-receptor ion channel, the N-methyl-D-aspartate (NMDA) and the kainate/quisqualate (non-NMDA) subtypes, are co-localized at individual excitatory synapses1,2. This assumption is important because of the perceived interplay between NMDA and non-NMDA receptors in the induc-tion and expression of long-term potentiation: the NMDA class, by virtue of its voltage-dependent channel block by magnesium3,4 and calcium permeability5,6, provides the trigger for the induction of long-term potentiation, whereas the actual enhancement of synaptic efficacy is thought to be provided by the non-NMDA class7,9. If both receptor subtypes are present at the one synapse, such cross-modulation could occur rapidly and locally through diffusible factors. By measuring miniature synaptic currents in cultured hippocampal neurons we show that the majority (70%) of the excitatory synapses on a postsynaptic cell possess both kinds of receptor, although to different extents. Of the remaining excita-tory synapses, 20% contain only the non-NMDA subtype and the rest possess only NMDA receptors. This finding provides direct evidence for co-localization of glutamate-receptor subtypes at individual synapses, and also points to the possibility that long-term potentiation might be differentially expressed at each synapse according to the mix of receptor subtypes at that synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicoll, R. A., Kauer, J. A. & Malenka, R. C. Neuron 1, 97–103 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. Science 242, 724–728 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. Neuron 1, 911–917 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Muller, D., Joly, M. & Lynch, G. Science 242, 1694–1697 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Davies, S. N., Lester, R. A. J., Reymann, K. G. & Collingridge, G. L. Nature 338, 500–503 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Finch, D. M. & Jackson, M. B. Neurosci. Abstr. 13, 310 (1987).

    Google Scholar 

  11. Miledi, R. & Thies, R. J. Physiol., Lond. 212, 245–257 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forsythe, I. D. & Westbrook, G. L. J. Physiol., Lond. 396, 515–533 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Tox. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  14. Honore, T. et al. Science 241, 701–703 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Fatt, P. & Katz, B. J. Physiol., Lond. 117, 109–128 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bekkers, J. M. & Stevens, C. F. Understanding the Brain through the Hippocampus: The Hippocampal Region as a Model for Studying Brain Structure and Function (eds Storm-Mathisen, J., Zimmer, J. & Ottersen, O. P.) (Elsevier, Amsterdam, in the press).

  17. De Camilli, P., Cameron, R., Greengard, P. J. Cell Biol. 96, 1337–1354 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Martin, A. R. Handbook of Physiology. The Nervous System 329–355 (Am. Physiol. Soc. 1, 1977).

    Google Scholar 

  19. Tang, C.-M., Dichter, M. & Morad, M. Science 243, 1474–1477 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. del Castillo, J. & Katz, B. J. Physiol. 124, 560–573 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekkers, J., Stevens, C. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230–233 (1989). https://doi.org/10.1038/341230a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341230a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing