Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calmodulin supports both inactivation and facilitation of L-type calcium channels

Abstract

L-type Ca2+ channels support Ca2+ entry into cells, which triggers cardiac contraction1, controls hormone secretion from endocrine cells2 and initiates transcriptional events that support learning and memory3. These channels are examples of molecular signal-transduction units that regulate themselves through their own activity. Among the many types of voltage-gated Ca2+ channel, L-type Ca2+ channels particularly display inactivation and facilitation, both of which are closely linked to the earlier entry of Ca2+ ions4,5,6,7,8,9,10. Both forms of autoregulation have a significant impact on the amount of Ca2+ that enters the cell during repetitive activity, with major consequences downstream. Despite extensivebiophysical analysis9, the molecular basis of autoregulation remains unclear, although a putative Ca2+-binding EF-hand motif11,12 and a nearby consensus calmodulin-binding isoleucine-glutamine (‘IQ’) motif13,14 in the carboxy terminus of the α1C channel subunit have been implicated12,14,15,16. Here we show that calmodulin is a critical Ca2+ sensor for both inactivation and facilitation, and that the nature of the modulatory effect depends on residues within the IQ motif important for calmodulin binding. Replacement of the native isoleucine by alanine removed Ca2+-dependent inactivation and unmasked a strong facilitation; conversion of the same residue to glutamate eliminated both forms of autoregulation. These results indicate that the same calmodulin molecule may act as a Ca2+ sensor for both positive and negative modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Point mutations in the IQ motif of 77WT affect Ca2+-dependent inactivation.
Figure 2: Frequency-dependent facilitation of I Ca conducted by 77I/A.
Figure 3: Repriming experiments reveal Ca2+-dependent facilitation of 77WT and 77I/V.
Figure 4: A mutant calmodulin, CaM(3−), inhibits Ca2+-dependent inactivation and facilitation.
Figure 5: CaM interacts with the IQ motif of α1C.

Similar content being viewed by others

References

  1. Bers, D. M. Excitation–Contraction Coupling and Cardiac Contractile Force (Kluwer Academic, Dordrecht, (1991).

    Google Scholar 

  2. Artalejo, C. R., Adams, M. E. & Fox, A. P. Three types of Ca2+ channels trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76 ( 1994).

    Article  ADS  CAS  Google Scholar 

  3. Murphy, T. H., Worley, P. F. & Baraban, J. M. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635 (1991).

    Article  CAS  Google Scholar 

  4. Eckert, R. & Chad, J. E. Inactivation of Ca2+ channels. Prog. Biophys. Mol Biol. 44, 215 –267 (1984).

    Article  CAS  Google Scholar 

  5. Noble, S. & Shimoni, Y. The calcium and frequency dependence of the slow inward current ‘staircase’ in frog atrium. J. Physiol. 310, 57–75 ( 1981).

    Article  CAS  Google Scholar 

  6. Gurney, A. M., Charnet, P., Pye, J. M. & Nargeot, J. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature 341, 65– 68 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Zygmunt, A. C. & Maylie, J. Stimulation-dependent facilitation of the high threshold calcium current in guinea-pig ventricular myocytes. J. Physiol. 428, 653–671 (1990).

    Article  CAS  Google Scholar 

  8. McDonald, T. F., Pelzer, S., Trautwein, W. & Pelzer, D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74, 365– 507 (1994).

    Article  CAS  Google Scholar 

  9. Imredy, J. P. & Yue, D. T. Mechanism of Ca2+-sensitive inactivation of L-type Ca2+ channels. Neuron 12, 1301–1318 (1994).

    Article  CAS  Google Scholar 

  10. Soldatov, N. M., Zühlke, R. D., Bouron, A. & Reuter, H. Molecular structures involved in L-type calcium channel inactivation. Role of the carboxyl-terminal region encoded by exons 40-42 in α1Csubunit in the kinetics and Ca2+-dependence of inactivation. J. Biol. Chem. 272, 3560–3566 (1997).

    Article  CAS  Google Scholar 

  11. Babitch, J. Channel hands. Nature 346, 321– 322 (1990).

    Article  ADS  CAS  Google Scholar 

  12. De Leon, M. et al. Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 270, 1502–1506 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J. 11, 331– 340 (1997).

    Article  CAS  Google Scholar 

  14. Zühlke, R. D. & Reuter, H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1Csubunit. Proc. Natl Acad. Sci. USA 95, 3287–3294 (1998).

    Article  ADS  Google Scholar 

  15. Zhou, J. M. et al. Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+-binding function of a motif with similarity to Ca2+-binding domains. Proc. Natl Acad. Sci. USA 94, 2301–2305 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Bernatchez, G., Talwar, D. & Parent, L. Mutations in the EF-hand motif impair the inactivation of barium currents of the cardiac α1Cchannel. Biophys. J. 75, 1727–1739 (1998).

    Article  CAS  Google Scholar 

  17. Soldatov, N. M. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts. Proc. Natl Acad. Sci. USA 89, 4628–4632 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Hess, P., Lansman, J. B. & Tsien, R. W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88, 293–319 (1986).

    Article  CAS  Google Scholar 

  19. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503– 507 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Kincaid, R. L., Vaughan, M., Osborne, J. C. J & Tkachuk, V. A. Ca2+-dependent interaction of 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with cyclic nucleotide phosphodiesterase, calcineurin, and troponin I. J. Biol. chem. 257, 10638–10643 (1982).

    CAS  PubMed  Google Scholar 

  21. Höfer, G. F. et al. Intracellular Ca2+ inactivates L-type Ca2+ channels with a Hill coefficient of 1 and an inhibition constant of 4 µM by reducing channel's open probability. Biophys. J. 73, 1857–1865 (1997).

    Article  ADS  Google Scholar 

  22. Haack, J. A. & Rosenberg, R. L. Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers. Biophys. J. 66, 1051–1060 ( 1994).

    Article  CAS  Google Scholar 

  23. Zhang, S., Ehlers, M. D., Bernhardt, J. P., Su, C. T. & Huganir, R. L. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21, 443–453 (1998).

    Article  CAS  Google Scholar 

  24. Liu, M., Chen, T., Ahamed, B., Li, J. & Yau, K. W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348– 1354 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Vorherr, T. et al. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump. Biochemistry 29, 355–365 (1990).

    Article  CAS  Google Scholar 

  26. Soldatov, N. M., Bouron, A. & Reuter, H. Different voltage-dependent inhibition by dihydropyridines of human Ca2+ channel splice variants. J. Biol. Chem. 270, 10540–10543 ( 1995).

    Article  CAS  Google Scholar 

  27. Singer, D. et al. The role of the subunits in the function of the calcium channel. Science 253, 1553–1557 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Ruth, P. et al. Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 245, 1115–1118 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Zühlke, R. D., Bouron, A., Soldatov, N. M. & Reuter, H. Ca2+ channel sensitivity towards the blocker isradipine is affected by alternative splicing of the human α1Csubunit gene. FEBS Lett. 427, 220– 224 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Adelman and J. Maylie for providing CaM(WT) and CaM(−3), C. Klee and M. Ikura for helpful discussions, and H.van Hees for technical assistance. This work was supported by the Swiss National Science Foundation (H.R.), a Pfizer postdoctoral fellowship (G.S.P.), an MSTP training grant (K.D.), and grants from NIH (G.S.P.), NINDS, NIMH, the McKnight Foundation and the Mathers Charitable Trust (R.W.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zühlke, R., Pitt, G., Deisseroth, K. et al. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999). https://doi.org/10.1038/20200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20200

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing