Skip to main content

Advertisement

Log in

Epigenetics and Health Disparities

  • Environmental Epidemiology (J Braun, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

African-Americans disproportionately suffer from leading causes of morbidity and mortality including cardiovascular disease (CVD), cancer, and preterm birth. Disparities can arise from multiple social and environmental exposures, but how the human body responds to these exposures to result in pathophysiologic states is incompletely understood.

Recent Findings

Epigenetic mechanisms, particularly DNA methylation, can be altered in response to exposures such as air pollution, psychosocial stress, and smoking. Each of these exposures has been linked to the above health states (CVD, cancer, and preterm birth) with striking racial disparities in exposure levels. DNA methylation patterns have also been shown to be associated with each of these health outcomes.

Summary

Whether DNA methylation mediates exposure–disease relationships and can help explain racial disparities in health is not known. However, because many environmental and adverse social exposures disproportionately affect minorities, understanding the role that epigenetics plays in the human response to these exposures that often result in disease is critical to reducing disparities in morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • of importance •• of major importance

  1. Obama B. United States health care reform: progress to date and next steps. JAMA. 2016;316(5):525–32. doi:10.1001/jama.2016.9797.

  2. Baron SL, Steege AL, Marsh SM, Menéndez CC, Myers JR; Centers for Disease Control and Prevention (CDC). Nonfatal work-related injuries and illnesses - United States, 2010. MMWR Suppl 2013;62(3):35–40.

  3. Clarke CA, Keegan THM, Yang J, et al. Age-specific incidence of breast cancer subtypes: understanding the black-white crossover. JNCI J Natl Cancer Inst. 2012;104(14):1094–101. doi:10.1093/jnci/djs264.

    Article  PubMed  Google Scholar 

  4. Wilson RJ, Ryerson AB, Zhang K, Dong X, Wilson R. Relative survival analysis using the Centers for Disease Control and Prevention's National Program of Cancer Registries Surveillance System Data, 2000-2007. J Regist Manag. 2014;41(2):72–6.

    Google Scholar 

  5. Hamilton BE, Martin JA, Osterman MJK, Curtin SC, Matthews TJ. Births: final data for 2013. Natl Vital Stat Reports. 2015;64(12):1–104.

    Google Scholar 

  6. Mathews TJ, Macdorman MF, Thoma ME. Infant mortality statistics from the 2013 period linked birth/infant death data set. Natl Vital Stat Reports. 2015;64(9):2000–13.

    Google Scholar 

  7. Karlamangla AS, Merkin SS, Crimmins EM, Seeman TE. Socioeconomic and ethnic disparities in cardiovascular risk in the United States, 2001–2006. Ann Epidemiol. 2010;20(8):617–28. doi:10.1016/j.annepidem.2010.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krueger PM, Tran MK, Hummer RA, Chang VW. Mortality attributable to low levels of education in the United States. Zeeb H, ed. PLoS One. 2015; 10(7):e0131809. doi:10.1371/journal.pone.0131809.

  9. Krueger PM, Saint Onge JM, Chang VW. Race/ethnic differences in adult mortality: the role of perceived stress and health behaviors. Soc Sci Med. 2011;73(9) doi:10.1016/j.socscimed.2011.08.007.

  10. King CJ, Redwood Y. The health care institution, population health and Black lives. J Natl Med Assoc. 2016;108 doi:10.1016/j.jnma.2016.04.002.

  11. Burris HH, Rifas-Shiman SL, Camargo CA, et al. Plasma 25-hydroxyvitamin D during pregnancy and small-for-gestational age in black and white infants. Ann Epidemiol. 2012;22(8):581–6. doi:10.1016/j.annepidem.2012.04.015.

    Article  PubMed  PubMed Central  Google Scholar 

  12. James-Todd TM, Chiu Y-H, Zota AR. Racial/ethnic disparities in environmental endocrine disrupting chemicals and women’s reproductive health outcomes: epidemiological examples across the life course. Curr Epidemiol Reports. 2016;3(2):161–80. doi:10.1007/s40471-016-0073-9.

    Article  Google Scholar 

  13. • Wang Y, Eliot MN, Wellenius GA, et al. J Am Heart Assoc. 2014;3(4) doi:10.1161/JAHA.114.000983. These researchers sought to establish a relationship between fine particulate matter (PM2.5) air pollution and blood pressure. They reported that even short-term exposure to PM2.5 was associated with increases in blood pressure, angiotensin-converting enzyme (ACE), and ACE methylation- suggesting DNA methylation plays a role in heart health

  14. Sutherland JE, Costa M. Epigenetics and the environment. Ann N Y Acad Sci. 2006;983(1):151–60. doi:10.1111/j.1749-6632.2003.tb05970.x.

    Article  Google Scholar 

  15. Burris HH, Baccarelli AA. Environmental epigenetics: from novelty to scientific discipline. J Appl Toxicol. 2014;34(2):113–6. doi:10.1002/jat.2904.

    Article  CAS  PubMed  Google Scholar 

  16. Burris HH, Baccarelli AA, Wright RO, Wright RJ. Epigenetics, linking social and environmental exposures to preterm birth. Pediatr Res. 2015;(April):1–5. doi:10.1038/pr.2015.191.

  17. Nettleton JA, Steffen LM, Mayer-Davis EJ, et al. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2006;83(6):1369–79. doi:10.1111/j.1600-6143.2008.02497.x.Plasma.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grobman WA, Parker C, Wadhwa PD, et al. Racial/ethnic disparities in measures of self-reported psychosocial states and traits during pregnancy. Am J Perinatol August 2016. doi:10.1055/s-0036-1586510.

  19. Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49(24):1567–78. doi:10.1136/bjsports-2014-094073.

    Article  PubMed  Google Scholar 

  20. • Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106. doi:10.4161/epi.3.2.6034. This study's objective was to analyze the effects of prenatal exposure to maternal depressed/anxious mood during the third trimester. Among infants exposed to depressed maternal moods, the investigators found altered hypothalamic-pituitary-adrenal (HPA) stress responses, increased methylation of glucocorticoid receptor gene (NR3C1), and increased salivary cortisol stress reponse at 3 months of age, these infants had an increased salivary cortisol stress reponse

    Article  PubMed  Google Scholar 

  21. Boeke CE, Baccarelli A, Kleinman KP, et al. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics. 2012;7(3):253–60. doi:10.4161/epi.7.3.19082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233–42. doi:10.1016/S0140-6736(02)11274-8.

    Article  CAS  PubMed  Google Scholar 

  23. Priftis KN, Mantzouranis EC, Anthracopoulos MB. Asthma symptoms and airway narrowing in children growing up in an urban versus rural environment. J Asthma. 2009;46(3):244–51. doi:10.1080/02770900802647516.

    Article  PubMed  Google Scholar 

  24. Wang C, Chen R, Cai J, et al. Personal exposure to fine particulate matter and blood pressure: a role of angiotensin converting enzyme and its DNA methylation. Environ Int. 2016; doi:10.1016/j.envint.2016.07.001.

    Google Scholar 

  25. Parikh PV, Wei Y. PAHs and PM 2.5 emissions and female breast cancer incidence in metro Atlanta and rural Georgia. Int J Environ Health Res. 2016;3123(April):1–9. doi:10.1080/09603123.2016.1161178.

    Google Scholar 

  26. Ritz B, Yu F, Chapa G, Fruin S. Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology. 2000;11(5):502–11. doi:10.1097/00001648-200009000-00004.

    Article  CAS  PubMed  Google Scholar 

  27. Pratt GC, Vadali ML, Kvale DL, Ellickson KM. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk. Int J Environ Res Public Heal Int J Environ Res Public Heal Int J Environ Res Public Heal. 2015;12:5355–72. doi:10.3390/ijerph120505355.

    Google Scholar 

  28. Brian Byrd J, Morishita M, Bard RL, et al. Acute increase in blood pressure during inhalation of coarse particulate matter air pollution from an urban location. J Am Soc Hypertens. 2016;10(2):133–9. doi:10.1016/j.jash.2015.11.015.

    Article  PubMed  Google Scholar 

  29. Nachman KE, Parker JD. Exposures to fine particulate air pollution and respiratory outcomes in adults using two national datasets: a cross-sectional study. Environ Health. 2012;11:25. doi:10.1186/1476-069X-11-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong J, Agha G, Baccarelli AA. The role of DNA methylation in cardiovascular risk and disease. Circ Res. 2016;118(1):119–31. doi:10.1161/CIRCRESAHA.115.305206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohai P, Lantz PM, Morenoff J, House JS, Mero RP. Racial and socioeconomic disparities in residential proximity to polluting industrial facilities: evidence from the Americans’ Changing Lives Study. Am J Public Health. 2009;99(S3):S649–56. doi:10.2105/AJPH.2007.131383.

    Article  PubMed  PubMed Central  Google Scholar 

  32. DeNavas-Walt C and, Proctor BD. Income and poverty in the United States: 2013; 2014. doi: P 60–252.

  33. • Breton C V, Yao J, Millstein J, et al. Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and Alu methylation and childhood blood pressure and carotid intima-media thickness in the Children’s Health Study. Environ Health Perspect. 2016;(November 2015). doi:10.1289/EHP181. Using newborn infant blood spots, Breton et al. found associations between air pollution exposure and LINE-1 DNA methylation. They also report that LINE-1 DNA methylation may affect long-term cardiovascular health risk .

  34. Zhong J, Colicino E, Lin X, et al. Cardiac autonomic dysfunction: particulate air pollution effects are modulated by epigenetic immunoregulation of Toll-like receptor 2 and dietary flavonoid intake. J Am Heart Assoc. 2015;4(1):e001423. doi:10.1161/JAHA.114.001423.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thoits PA. Stress and health: major findings and policy implications. J Health Soc Behav. 2010;51(1 Suppl):S41–53. doi:10.1177/0022146510383499.

    Article  PubMed  Google Scholar 

  36. Steptoe A, Kivimäki M, Lowe G, Rumley A, Hamer M. Blood pressure and fibrinogen responses to mental stress as predictors of incident hypertension over an 8-year period. Ann Behav Med July 2016. doi:10.1007/s12160-016-9817-5.

  37. Williams DR, Mohammed SA, Shields AE. Understanding and effectively addressing breast cancer in African American women: unpacking the social context. Cancer. 2016;122(14):2138–49. doi:10.1002/cncr.29935.

    Article  PubMed  Google Scholar 

  38. Palma-Gudiel H, Córdova-Palomera A, Eixarch E, Deuschle M, Fañanás L. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigenetics. 2015;10(10):893–902. doi:10.1080/15592294.2015.1088630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turner RJ, Avison WR. Status variations in stress exposure: implications for the interpretation of research on race, socioeconomic status, and gender. J Health Soc Behav 2003; 44(4):488–505. http://www.ncbi.nlm.nih.gov/pubmed/15038145. Accessed July 20, 2016.

  40. Hatch SL, Dohrenwend BP. Distribution of traumatic and other stressful life events by race/ethnicity, gender, SES and age: a review of the research. Am J Community Psychol. 2007;40(3–4):313–32. doi:10.1007/s10464-007-9134-z.

    Article  PubMed  Google Scholar 

  41. Saban KL, Mathews HL, DeVon HA, Janusek LW. Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis. 2014;5(5):346–55. doi:10.14336/AD.2014.0500346.

    PubMed  PubMed Central  Google Scholar 

  42. Weaver ICG. Epigenetic effects of glucocorticoids. Semin Fetal Neonatal Med. 2009;14(3):143–50. doi:10.1016/j.siny.2008.12.002.

    Article  PubMed  Google Scholar 

  43. Center for Health Statistics. Early release of selected estimates based on data from the National Health Interview Survey 2015;(16).

  44. Alexander LA, Trinidad DR, Sakuma KLK, et al. Why we must continue to investigate menthol’s role in the African American smoking paradox. Nicotine Tob Res. 2016;18(suppl 1):S91–S101. doi:10.1093/ntr/ntv209.

    Article  PubMed  Google Scholar 

  45. •• Steenaard RV, Ligthart S, Stolk L, et al. Tobacco smoking is associated with methylation of genes related to coronary artery disease. Clin Epigenetics. 2015;7(1):54. doi:10.1186/s13148-015-0088-y. In this study, investigators studied the DNA methylation of genes with known single nucleotide polymorphisms associated with coronary artery disease. They found that DNA methylation in these genes was associated with smoking, suggesting a possible epigentic link between smoking and coronary artery disease

    Article  PubMed  PubMed Central  Google Scholar 

  46. • Joubert BR, Haberg SE, Nilsen RM, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31. doi:10.1289/ehp.1205412. In this study, investigators reported that in utero exposure to maternal smoking through 18 weeks of pregnancy was associated with differntial DNA methylation patterns at specific CpG sites found in newborn cord blood. Specifically, DNA methylation of the aryl hydrocarbon receptor repressor was most differentially methylated in the offspring of smokers vs. non-smokers

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Philibert R, Hollenbeck N, Andersen E, et al. Reversion of AHRR demethylation is a quantitative biomarker of smoking cessation. Front Psychiatry. 2016;7:55. doi:10.3389/fpsyt.2016.00055.

    Article  PubMed  PubMed Central  Google Scholar 

  48. •• Joubert BR, Felix JF, Yousefi P, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–96. doi:10.1016/j.ajhg.2016.02.019. This group analyzed the association between maternal smoking and newborn blood DNA methylation in a meta-analysis of 6,685 pregnant mothers as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Within this cohort, statistical significance in differential methylation of over 6,000 CpGs were found. These CpGs correlated with diseases in the child and/or later adult smoking. Meta-analysis of their data identified several loci associated with not only responses to maternal smoking in pregnancy, but also loci that associated with diseases in later childhood

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Philibert RA, Beach SRH, Lei M-K, Brody GH. Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Clin Epigenetics. 2013;5(1):19. doi:10.1186/1868-7083-5-19.

    Article  PubMed  PubMed Central  Google Scholar 

  50. National Center for Health Statistics, 2015 Health, United States: with special feature on racial and ethnic health disparities. National Center for Health Statistics; 2015:107. http://www.ncbi.nlm.nih.gov/pubmed/27308685. Accessed June 27, 2016.

  51. Guarrera S, Fiorito G, Onland-Moret NC, et al. Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenetics. 2015;7:133. doi:10.1186/s13148-015-0164-3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Centers for Disease Control. United States Cancer Statistics. US Cancer Stat Work Gr. 2013;(888):6348. https://nccd.cdc.gov/uscs/cancersbyraceandethnicity.aspx.

  53. •• Wang S, Dorsey TH, Terunuma A, Kittles RA, Ambs S, Kwabi-Addo B. Relationship between tumor DNA methylation status and patient characteristics in African-American and European-American women with breast cancer. PLoS One. 2012;7(5):e37928. doi:10.1371/journal.pone.0037928. These researchers analyzed DNA methylation patterns in African American and Eurpean American breast cancer patients. They found significant methylation differences in the promoter CpG island of the tumor suppressor gene, CDH13. African American patients demonstrated increased hypermethylation compared to matched European Americans. This hypermethylation was found to be significantly associated with decreased breast cancer survival

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mohammed SI, Springfield S, Das R. Role of epigenetics in cancer health disparities. Methods Mol Biol. 2012;863:395–410. doi:10.1007/978-1-61779-612-8_25.

    Article  CAS  PubMed  Google Scholar 

  55. Grandin M, Mathot P, Devailly G, et al. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference. EMBO Mol Med. 2016;33(13):e201505945. doi:10.15252/emmm.201505945.

    Google Scholar 

  56. Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet (London, England). 2015;385(9966):430–40. doi:10.1016/S0140-6736(14)61698-6.

    Article  Google Scholar 

  57. Burris HH, Rifas-Shiman SL, Baccarelli A, et al. Associations of LINE-1 DNA methylation with preterm birth in a prospective cohort study. J Dev Orig Heal Dis. 2012;3(3):173–81.

    Article  CAS  Google Scholar 

  58. Burris HH, Baccarelli AA, Byun HM, et al. Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight. Epigenetics. 2015;10(10):913–21. doi:10.1080/15592294.2015.1078963.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schroeder JW, Conneely KN, Cubells JC, et al. Neonatal DNA methylation patterns associate with gestational age. Epigenetics. 2011;6(12):1498–504. doi:10.4161/epi.6.12.18296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burris HH, Baccarelli AA, Motta V, et al. Association between length of gestation and cervical DNA methylation of PTGER2 and LINE 1-HS. Epigenetics. 2014;9(8):1083–91. doi:10.4161/epi.29170.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mehrotra J, Ganpat MM, Kanaan Y, et al. Estrogen receptor/progesterone receptor-negative breast cancers of young African-American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res. 2004;10(6):2052–7. doi:10.1158/1078-0432.CCR-03-0514.

    Article  CAS  PubMed  Google Scholar 

  62. Song M-A, Brasky TM, Marian C, et al. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women. Epigenetics. 2015;10(12):1177–87. doi:10.1080/15592294.2015.1121362.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Adkins RM, Krushkal J, Tylavsky FA, Thomas F. Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res A Clin Mol Teratol. 2011;91(8):728–36. doi:10.1002/bdra.20770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salihu HM, Das R, Morton L, et al. Racial differences in DNA-methylation of CpG sites within preterm-promoting genes and gene variants. Matern Child Health J. 2016;20(8):1680–7. doi:10.1007/s10995-016-1967-3.

    Article  CAS  PubMed  Google Scholar 

  65. Hu H, Dailey AB, Kan H, Xu X. The effect of atmospheric particulate matter on survival of breast cancer among US females. Breast Cancer Res Treat. 2013;139(1):217–26. doi:10.1007/s10549-013-2527-9.

    Article  CAS  PubMed  Google Scholar 

  66. •• Sun YV, Smith AK, Conneely KN, et al. Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum Genet. 2013;132(9):1027–37. doi:10.1007/s00439-013-1311-6. This study specifically focused on differences in DNA methylation responses to smoking and whether the effects differed by race in Afircan Americans vs. Caucasions. They investigators reported that despite the genetic differences between the two racial gorups, there were no statistically significant differences in the epigenetic response to smoking between the two racial groups

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–39. doi:10.1161/CIR.0000000000000152.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Alexis Vick had the opportunity to work on this project due to the Summer Student Research Program in Newborn Medicine at Beth Israel Deaconess Medical Center and Boston Children’s Hospital made possible by an NIH training grant: T32HD007466, PI S. Kourembanas. Dr. Burris is funded by NIH K23ES022242, PI HH Burris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather H. Burris.

Ethics declarations

Conflict of Interest

Alexis D. Vick and Heather H. Burris each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Environmental Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vick, A.D., Burris, H.H. Epigenetics and Health Disparities. Curr Epidemiol Rep 4, 31–37 (2017). https://doi.org/10.1007/s40471-017-0096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-017-0096-x

Keywords

Navigation