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which they might covary. Early investigations 
into this issue did not find evidence for geo-
graphic clustering of genetic risk at the state 
level (Rehkopf, Domingue, and Cullen 2016). 
However, such studies focused only on genetic 
risks for physical health outcomes (coronary 
artery disease, diabetes, and ischemic stroke), 
quantified these genetic risks in a limited man-
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The geographic clustering of specific genotypes 
could be an important biosocial pathway 
through which observed spatial correlations of 
morbidities and related health and social char-
acteristics materialize (Kindig and Cheng 2013; 
Murray et al. 2006). Likewise, such potential 
clustering may complicate efforts to disentan-
gle genetic from environmental influences with 
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ner (using only genome-wide significant vari-
ants), and focused on the geographic concen-
tration of genetic risk at birth. They thus did 
not allow for the potential dynamic of geo-
graphic mobility within a single generation, 
which may lead to an increase in the spatial 
patterning of genetic risk later in life. The test 
for such clustering at different stages of the life 
course adds an important new dimension to 
the health and aging literatures.

It has long been known that genotypes are 
not distributed randomly across environments 
(Plomin, DeFries, and Loehlin 1977). Within 
this literature, some models of gene-
environment interplay have incorporated a life 
course perspective, but there is as of yet little 
empirical evidence about specific traits and pe-
riods of the life course in which genotypes will 
become increasingly or decreasingly clustered 
in particular environments (Shanahan and 
Boardman 2009). The active gene-environment 
correlation (rGE) hypothesis is especially sa-
lient here as it suggests that people actively se-
lect into environments as a function of their 
genotype. We can evaluate the salience of this 
active rGE hypothesis by examining genetic 
clustering at the state level at different points 
of the life course—that is, when individuals 
have low degrees of autonomy to sort them-
selves genetically (childhood) and when they 
do have the agency and freedom to change en-
vironments (adulthood). Thus, evaluating 
whether life course-related, inter-state mobility 
is associated with changes in geographic con-
centration in genetics would provide critical 
information about migration in the gene-
environment interplay paradigm.

This observation motivates the first ques-
tion in this study: is there any evidence for the 
geographic clustering of genotypes, as opera-
tionalized by polygenic scores, at different 
points in the life course (Belsky and Israel 2014; 
Dudbridge 2016)? 

Genetics and the Life Course
Life course research begins with the observa-
tion that individual development is a constant 
exchange between the specific characteristics 
of individuals and their social, physical, and 
cultural environments (Elder 1998). A large 
body of work has examined the concordance 

and discordance of behavioral and personality 
traits among very young twin pairs to estimate 
the extent to which genes contribute to specific 
traits. Two main observations emerge from this 
work. First, nearly all traits of interest to behav-
ioral and social scientists—such as health, 
physical size, communication skills, cognitive 
ability, and behavioral disinhibition—are mod-
erately influenced by genetics in which genes 
account for roughly one-third to one-half of 
their overall variation (Turkheimer 2000; Pol-
derman et al. 2015). Second, the relative con-
tribution of genes to many behavioral traits  
can change considerably over the life course. 
A particularly striking example of the latter is 
known as the Wilson effect (Bouchard 2013), 
which suggests that the heritability of cognitive 
ability increases as individuals age. The gene-
environment typology anticipates such varia-
tion as a consequence of shifting environmen-
tal exposures. However, shifting environmental 
exposures may themselves be related to geno-
type and such a possibility has important im-
plications (Jaffee and Price 2007).

In the endeavor to understand the role of 
genetics in human behavior and well-being, a 
question of fundamental import is whether or 
not specific genetic polymorphisms affect com-
plex traits similarly across different environ-
ments. Straightforward identification of gene-
environment interactions (GxE) rests on the 
assumption that genes and environments are 
independent. Others have made clear that our 
ability to detect and understand GxE associa-
tions are seriously compromised in the face of 
rGE (Jaffee and Price 2007; Fletcher and Conley 
2013). For example, early evidence suggested 
that sensitivity to stressful life events is condi-
tioned by genotype. Individuals who have ex-
perienced the same stressful life event may 
have different mental health responses. Avsha-
lom Caspi and colleagues suggest that some of 
this difference is due to the presence of the S’ 
allele in the 5HTTLPR locus, which is linked to 
serotonergic production and maintenance 
(2003). However, evidence indicates that carri-
ers of this short allele may be more likely than 
others to be exposed to increased levels of 
stress or different types of stress (Risch et al. 
2009). In that event, the proposed GxE inter
action may be better characterized as an rGE 
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association (Culverhouse et al. 2017). Such com-
plications may help explain the mixed replica-
tion history for this finding and for GxE find-
ings in the candidate gene literature more 
generally (Duncan and Keller 2011). To avoid 
this concern, researchers have made efforts to 
use environmental exposures that are most 
likely to be independent of genotype (Schmitz 
and Conley 2016; Domingue, Liu, Okbay, and 
Belsky 2017).

Others have used state of residence for these 
purposes arguing that selection of state of res-
idence is unlikely to be driven by genetic fac-
tors—for example, smokers choosing a state of 
residence based on its pro-smoking features 
(Boardman 2009). With longitudinal data, we 
have some capacity for evaluating this claim. 
Specifically, we present statistical estimates 
that characterize the extent to which specific 
genetic polymorphisms linked to important 
outcomes are clustered across U.S. states. We 
pay particular attention to differences in these 
estimates at different stages of the life course.

Mechanisms Rel ated to Gene-
Environment Correl ation
We consider several potential mechanisms (ac-
tive, passive, evocative, and mortality selection) 
through which gene-environment correlations 
come to be and how they may be related to the 
specific phenotypes we investigate as well as 
different periods in the life course. Active gene-
environment correlations exist when individu-
als select into specific environments because of 
genetic polymorphisms that are linked to par-
ticular phenotypes and endophenotypes. Con-
sider, for example, individuals for whom a 
healthy lifestyle—including the avoidance of 
tobacco products—is, in part, genetically influ-
enced. Over time, it is possible that such indi-
viduals may select to live in states that provide 
a greater access to outdoor activities and other 
cardiovascular health-enhancing behaviors.

In contrast to active rGE, passive rGE is a 
situation in which children inherit their genes 
and their environments from their parents. 
This may simply reflect a form of population 
stratification, along the lines of what has been 
shown on a comparable geographic scale (No-
vembre et al. 2008; Nelis et al. 2009; Han et al. 
2017). We hypothesize that the effect of passive 

rGE will be most pronounced when state of 
residence is measured at birth. Relatedly, the 
evocative rGE mechanism occurs when specific 
genotypes evoke specific environments. The 
most common example is that genetically ori-
ented behaviors in childhood such as hostility 
or irritability may evoke more harsh parenting 
and educational environments for certain chil-
dren (Jaffee and Price 2007). This model gener-
ally focuses on younger children who have lim-
ited capacity to select into environments but 
who may evoke certain environmental re-
sponses, such as from parents or teachers. As 
in regard to active and passive rGE, we again 
suspect that the effect will be most pronounced 
when measured at state of birth (though the 
role of evocative rGE may be limited in this 
study given the nature of phenotypes we con-
sider). Although the evocative rGE model may 
be relevant to elderly populations when con-
sidering housing selection toward the end of 
life, the likelihood that one’s genetic charac-
teristics would evoke selection into a specific 
state of residence seems implausible. We there-
fore focus on active and passive forms of rGE 
in our interpretation.

Finally, we consider a form of observed rGE 
that is rarely discussed in the rGE literature but 
that has special import given the nature of our 
sample of surviving older respondents (Zaja-
cova and Burgard 2013). Our state-level esti-
mates of average polygenic score (PGS) levels 
(and by extension, rGE and social genetic ef-
fects) are confounded by mortality selection in 
which the composition of those in the sample 
is increasingly the most healthy. Because the 
social and environmental characteristics of 
state or smaller places of residence may affect 
mortality, we could see greater state-level intra-
class correlations (ICCs) later in the life course 
due to differential mortality associated with 
genotype (see Deaton and Lubotsky 2003).

Mechanisms Rel ated to 
Ecological Penetr ance
We consider the penetrance (association of 
genotype and phenotype) of the polygenic 
scores at both the individual and ecological 
(that is, state mean) level. Differences in pen-
etrance between these two levels must be in-
terpreted with care. We do not have the neces-
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sary data to make fine-grained distinctions 
about the mechanisms driving increased eco-
logical penetrance and thus focus on asking 
about the operation of a single mechanism. 
Specifically, we ask whether penetrance has in-
creased at the ecological level net of an indi-
vidual’s genetic endowment. This could sug-
gest that the genetic load of an individual’s 
within-state neighbors are predictive of an in-
dividual’s response, that is, social genetic ef-
fects, thus leading to a larger ecological than 
individual-level penetrance (Domingue and 
Belsky 2017). This mechanism would be poten-
tially observable via the predictive power of the 
mean level of a polygenic score in the state net 
of an individual’s own polygenic score. How-
ever, a number of alternative mechanisms are 
also explanations for such a finding. The pres-
ence of direct environmental or GxE effects 
where the environmental influence is orthogo-
nal to the effect of the mean polygenic score, 
attenuation due to measurement error, aggre-
gation bias, and other nonlinearities could also 
drive increased ecological correlations. Uncer-
tainty about the meaning of aggregate relation-
ships would not be unique to this type of soci-
ogenomic inquiry but may still provide insight 
into areas of GxE research that need proceed 
with caution (Mellor and Milyo 2001; Wilkinson 
1996).

Data
We use data from the Health and Retirement 
Study (HRS). The HRS is a biennial survey of 
older Americans (age fifty and older), focusing 
on their health, family structure, and socioeco-
nomic status. Due to the lack of comparability 
of genetic association results using the poly-
genic score approach across racial groups (Carl-
son et al. 2013; Martin et al. 2017), we focus on 
8,629 respondents of European ancestry, as 
identified by their genetic data, born between 
1905 and 1974 (mean = 1938, IQR = 1938–1946). 
We use behavioral, medical, and anthropomet-
ric measures.

Measures
We describe the individual-level variables 
used in this study and provide their mean and 
standard deviation (SD) as operationalized 
here.

Alzheimer’s disease (M = 0.06, SD = 0.23): 
whether a respondent reported ever having 
memory-problems (waves 1–9) or Alzheim-
er’s (waves 10–11).

Body mass index (M = 29.7, SD = 6.0): maxi-
mum (Stokes and Preston 2016) over avail-
able waves.

Heart disease (M = 0.39, SD = 0.49): a binary 
indicator of whether a respondent ever re-
ported heart disease.

Education (M = 13.2, SD = 2.5): total years of 
educational attainment.

Smoking (M = 0.57, SD = 0.50): an indicator 
of whether a respondent ever reported 
smoking.

Height (M = 1.7, SD = 0.1): maximum re-
ported height.

Depression (M = 3.0, SD = 2.3): maximum 
number of Center for Epidemiological 
Studies-Depression (CESD) symptoms over 
all waves.

Arthritis (M = 0.75, SD = 0.43): an indicator 
of whether a respondent ever reports arthri-
tis.

States of Residence
Respondents’ state of residence at each wave 
of data collection is recorded as well as the state 
of birth and schooling for the respondent. Use 
of these geographic measures is complicated 
by the sampling scheme of the HRS. HRS em-
ploys a multistage sampling design. The first 
stage of sampling is metropolitan statistical 
areas (MSAs) or non-MSA U.S. counties. Current 
residents of states that contain MSAs or coun-
ties sampled by HRS may be represented in the 
HRS sample independently of where they were 
born. At the first wave of HRS data collection 
in 1992, respondents were in thirty-seven states 
plus the District of Columbia. We have a mini-
mum of two respondents in a state and a max-
imum of 377 (mean = 105, SD = 76, IQR = 59–
135). HRS respondents had to live in one of the 
MSAs at the time of data collection to be eli-
gible for HRS, but many residents of these 
MSAs would have come from elsewhere in the 
country. As a consequence, the HRS sample was 
born across all fifty states and the District of 
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Columbia. States have as few as one birth and 
as many as 646 (mean = 163, SD = 151, IQR = 
40–240).

The sampling frame of U.S. MSAs and coun-
ties has two implications. First, people are sam-
pled in a narrow geographic region in later life 
relative to where they were born. Thus, we an-
ticipate more clustering later in life because of 
the geographic clustering induced by the sam-
ple design relative to at birth purely as a func-
tion of sample design. Furthermore, this re-
stricts the generalizability of our findings in 
some respects since the HRS is not meant to 
be a representative sample at the state level. 
Second, not all states are represented in the 
baseline HRS survey, although HRS did sample 
from the most populous states, minimizing the 
negative implications for generalizability. To 
examine the degree to which our findings may 
fail to generalize due to the sampling scheme, 
we compared those who left their birth state at 
some point in the HRS to those who did not. 
The movers were heavier, had less education, 
and were more likely to have smoked. Thus, 
findings may be somewhat specific to the sam-
ple analyzed here.

Genetic Data
Genetic data for the HRS is based on single 
nucleotide polymorphisms (SNPs) collected via 
two methods. The first phase was collected via 
buccal swabs in 2006 using the Quiagen Auto-
pure method. The second phase used saliva 
samples collected in 2008 and extracted with 
Oragene. Genotype calls were then made based 
on a clustering of both data sets using the Il-
lumina HumanOmni2.5–4v1 array (for a de-
tailed report on the HRS genetic data, see Weir 
2012). SNPs are removed if they are missing in 
more than 5 percent of cases, have low minor 
allele frequency (0.01), and are not in Hardy-
Weinberg equilibrium (p < .001). We retain ap-
proximately 1.7 million SNPs after removing 
those that did not pass the quality control fil-
ters. We focus on non-Hispanic whites for sev-
eral reasons. First, allele frequency differences 
make direct comparisons of the distributions 
of polygenic scores across populations impos-
sible. Second, due to differences in patterns of 
linkage, Genome-Wide Association Study 
(GWAS) results discovered in European sam-

ples may not replicate in non-European sam-
ples (Carlson et al. 2013) and scores constructed 
from such results will perform differently out 
of sample (Martin et al. 2017). Third, the non-
white sample of genotyped HRS respondents 
shows substantial selection relative to the non-
Hispanic white sample (Domingue, Belsky, 
Harrati, Conley, Weir, and Boardman 2017).

Polygenic Score Construction
We constructed polygenic scores (PGS) using 
published GWAS results. We computed scores 
for Alzheimer’s (Lambert et al. 2013), BMI 
(Locke et al. 2015), educational attainment (Ok-
bay et al. 2016), cardiovascular disease (Schun-
kert et al. 2011), smoking (Tobacco and Genet-
ics Consortium 2010), height (Wood et al. 2014), 
major depressive disorder (Ripke et al. 2013), 
and rheumatoid arthritis (Okada et al. 2014). 
These were selected to cover a range of health, 
anthropometric, and behavioral outcomes. 
Briefly, polygenic scoring was done with the 
PLINK software (Chang et al. 2015) using a pre-
viously discussed pipeline (Conley et al. 2016). 
SNPs in the HRS genetic database were matched 
to SNPs with reported results in a GWAS. For 
each SNP, a loading was calculated as the num-
ber of phenotype-associated alleles multiplied 
by the effect-size estimated in the original 
GWAS. Loadings were summed across SNPs to 
calculate the polygenic score. Scores were first 
residualized on the top ten PCs computed only 
among the non-Hispanic white respondents of 
HRS and then standardized to have a mean of 
zero and standard deviation of one for analysis 
for ease of interpretation.

Modeling of Genot ype and 
Phenot ype Clustering
Our analytic strategy for the detection of ge-
netic clustering involves models of the form

	 Gis = α + us + eis,	 (1)

where Gis is the polygenic score for individual 
in the s-th state. Most importantly, eis captures 
the individual-level error term and us is a state-
specific random intercept (capturing either 
state of birth or state of current residence). We 
assume that us~Normal(0, σ2

u) and then con-
sider
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	 ICC =     
σ2

u	 .	 (2)

This quantity, the state-level ICC coefficient, 
is our key index of genetic concentration. That 
is, the contribution of σ2

u  to overall variation in 
polygenic risk (σ2

u + σ2
e) is summarized as a ratio 

that simply describes the proportion of genetic 
variance nested within states.

Models for Penetr ance
To further evaluate the extent to which states 
matter for the clustering of specific phenotypes 
and their corresponding PGS values, we first 
compare individual-level correlations between 
each trait and the PGS for that trait with eco-
logical correlations (for example, average state-
level education with average state-level PGS) 
focusing on state at birth. Instances in which 
the ecological correlation exceeds what we 
would expect based on the individual-level cor-
relation provide further support for importance 
of gene-environment interplay. We then pres-
ent results in which we model the individual 
and ecological contributions of PGS to individ-
ual phenotype. For outcome yis (where individ-
ual i is born in state s), we consider

	 yis = α + b1 gis + b2 gs + us + controls + εis.	  (3)

We consider both individual-level PGS (gis) 
and state-average PGS value (gs) to evaluate con-
tributions of average genotype to state-level 
variation in each phenotype net of individual 
genetic endowments. Standard errors are cor-
rected for state-level clustering (Zeileis 2004). 
We include demographic covariates (sex and 
birth year) as controls.

We also consider two sensitivity analyses re-
lated to equation (3). First, we estimate equa-
tion (3) in decennial birth cohorts to ensure 
that mortality selection and the changing sa-
lience of educational attainment are not driv-
ing our findings. Second, we further explore 
mortality selection via the use of weights previ-
ously discussed (Domingue, Belsky, Harrati, 
Conley, Weir, and Boardman 2017). These 
weights predict mortality prior to the genotyp-
ing window in HRS based on year of birth and 
a number of health conditions as well as edu-
cational attainment. We then use them as in-
verse probability weights to consider the sen-

σ2
u + σ2

e
sitivity of key findings to the fact that the HRS 
genetic data does not contain information on 
respondents who died prior to 2006 (Cole and 
Hernán 2008).

State- Level Clustering of 
Phenot ypes
We first consider the state-level clustering of 
the phenotypes to establish benchmarks for 
interpreting the state-level genetic concentra-
tions. The left panel of figure 1 summarizes 
state-level clustering for each trait at birth and 
then in later life. As described, these estimates 
characterize the proportion of variation for 
each trait that is due to clustering at the state 
level. An ICC of zero would indicate identical 
average education scores across all states (that 
is, all the variation occurs within states) and an 
ICC of one would indicate that there was no 
individual variation within states. In our anal-
ysis, the overall contribution of state of resi-
dence and state of birth are relatively small for 
all of the traits that we examine (for example, 
ICCs < 5 percent) but the magnitude of these 
ICCs are in line with other work in this area 
(Mehta and Chang 2009).

Education is a clear outlier in having state-
level ICC values that are considerably higher 
than the other traits at all points of the life 
course. Differences are clear in resources (such 
as tax levels to support education), structures 
(such as city, county, and state differences in 
the governance and support of districts), and 
opportunities (such as labor demands for dif-
ferent levels of skills) that would translate to 
observable differences across states. Education 
is also the only trait that shows a substantial 
increase in state clustering across the latter 
part of the life course. We note two potential 
explanations. First, it may indicate that states 
with higher average levels of education also 
have lower mortality rates, and the composi-
tion of those with more education becomes 
more pronounced in certain states as a result. 
This is particularly important given the increas-
ing levels of morbidity and mortality among 
middle-aged white adults in the United States 
(Case and Deaton 2015). Second, it could be due 
to migration associated with retirement. Both 
of these processes could in fact be acting in 
tandem to drive this increase.
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State- Level Clustering of 
Polygenic Scores (rGE)
We now consider one of the primary goals of 
this paper: to evaluate the degree of PGS clus-
tering at the state level. The right side of figure 
1 characterizes these magnitudes and how they 
change as a function of when in the life course 
state of residence is measured. We observe the 
largest clustering for the height and smoking 
polygenic scores. For these scores, observed 
clustering is higher than for any phenotype 
other than education. For education, we ob-
serve between 1 and 2 percent of the overall 
variation in the score to be clustered within 
state at any point in the life course. Next we 
explore the potential relevance of this cluster-
ing.

Ecological Versus  
Individual Penetr ance
We now turn to considerations of penetrance 
at the individual and ecological level based on 
state of birth. By comparing the individual and 

ecological correlations, we can provide indi-
rect evidence for potential environmental en-
hancement of rGE through mechanisms that 
are generally, and perhaps incorrectly, charac-
terized as GxE associations. In figure 2, the 
light gray bars focus on the correlation of in-
dividual phenotypes and PGSs. At the individ-
ual level, the largest observed association is (r 
= .26) is for BMI followed by education (r = .23) 
and height (r = .22). The darker bars in this 
figure depict state-level ecological correla-
tions. Consider first height. The individual and 
ecological correlations are roughly compara-
ble, suggesting a situation in which the trans-
lation of height-related genetics to physical 
stature is an individual-level phenomenon. 
This is perhaps intuitive given our understand-
ing of physical growth as a largely within-
person phenomenon.

But the story is quite different for depres-
sion, smoking, and education. In these cases, 
ecological correlations are larger than the in-
dividual correlations. This suggests the possi-

Figure 1. State-Level Clustering and Their Corresponding Polygenic Scores Across the Life Course

Source: Author’s calculations based on HRS Rand files and genetic data (Weir 2012).
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ble existence of higher-order process through 
which environmental differences (such as the 
mean genetic endowment within a state) are 
moderating the genotype-phenotype associa-
tion when considered at higher levels (other 
explanations are also possible, we return to 
these in discussion). Consider the ecological 
correlation between the state mean education 
and the associated PGS (r = 0.61). This is 2.7 
times the individual-level correlation and pro-
vides clear evidence that there is something ad-
ditional of interest occurring in the context of 
states. To further interrogate this possibility, 
we examine analyses in which we predict indi-
vidual phenotype using both individual and 
state-level genotype.

In figure 3, we consider estimates from equa-
tion (3). Returning to height, as expected, the 
state-level PGS did not offer any predictive 
power net of individual PGS. We observe similar 
results for smoking, heart disease and BMI, sug-
gesting that, for these phenotypes, little residual 
information is left in the state-mean polygenic 
score. However, we observe markedly different 

findings for depression and educational attain-
ment. For these phenotypes, the state-mean 
PGS predicts net of one’s polygenic score. We 
conducted two additional sensitivity analyses. 
First, we adjusted results for mortality selection 
prior to genotyping. Results were comparable; 
after weighting, the coefficient for state-level 
PGS mean was 0.08 (se = 0.012) for educational 
attainment and 0.08 (se = 0.012) for depression 
in their respective analyses. Second, we consid-
ered analyses for education restricted to the 
birth cohorts of the 1930s and 1940s to deter-
mine how sensitive results were to the changing 
salience of education over the years represented 
in the HRS birth cohorts. Again, findings were 
largely consistent. For 1930–1939 births, we es-
timated a coefficient of 0.06 (se = 0.020) for the 
mean educational attainment PGS. For 1940 to 
1949 births, the respective estimate was 0.10 (se 
= 0.021). This allows for the possibility of a cru-
cial role being played by the environment in de-
termining how quantities of human capital de-
velop; that is, these phenomena may have 
important between-person mechanisms.

Figure 2. Correlations Between Polygenic Risk Scores and Their Corresponding Traits at Individual  
and Ecological Levels

Source: Author’s calculations based on HRS Rand files and genetic data (Weir 2012).
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Discussion
This study focuses on the potential for geo-
graphic clustering and moderation of genetic 
effects across a number of outcomes important 
for both mental and physical health. Polygenic 
scores demonstrate different magnitudes of 
clustering with most scores showing relatively 
little clustering. These results are important for 
research in gene-environment interaction re-
search because the environment is often be-
lieved to be independent of genotype. Earlier 
work relied on the assumption that the state of 
residence was unlikely to be associated with 
specific genetic polymorphisms associated 
with specific genetic polymorphism. Thus, 
states were ideal candidates for the study of 
GxE given their relative exogeneity (Boardman 
2009). This work noted the potential implica-
tions of rGE between specific polymorphisms 
and state of residence, but was unable to test 
this assumption given the lack of appropriate 
molecular data at that time.

Here, we are able to provide estimates about 
the likelihood of this type of selection bias. 

This clustering is indeed small, but also similar 
to the observed phenotypic clustering in many 
cases. Genes related to smoking were among 
the most concentrated. It is unclear whether 
this selection affects the previously reported 
GxE results at the state level (Boardman 2009). 
Even the small amounts of genetic clustering 
observed in figure 1 may be substantively im-
portant depending on the genetic penetrance 
for that phenotype (for example, weak genetic 
concentration for a highly penetrant phenotype 
might be of interest).

Indeed, there do seem to be occasions in our 
data in which relatively weak geographic PGS 
concentrations lead to provocative associa-
tions. In particular, we observe cases where eco-
logical correlations are substantially larger 
than individual correlations. Moreover, for de-
pression and education, we have evidence to 
suggest that the state-level mean polygenic 
score for these traits is predictive of the trait 
net of an individual’s own genetic endowment. 
This might be so for a number of reasons. One 
set of explanations is mechanical. For example, 

Alzheimers

BMI

Heart

Depression

Education

Height

Smoke

Arthritis

0.0 0.1 0.2 0.3 0.4

Standardized Phenotype

State mean PGS
Own PGS

0.03

0.26

0.06

0.23

0.12

0.34

0.05

0.01

0

0.03

0.01

0.09

0.02

−0.02

0.07

0.04

Figure 3. Standardized Multilevel Regression Estimates for the Effect of Each PGS

Source: Author’s calculations based on HRS Rand files and genetic data (Weir 2012).
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misspecification at the individual level (such 
as nonlinearity in the penetrance of the PGS or 
measurement error) or even the nonrepresen-
tative geographic sampling scheme of the HRS 
may lead to the inflated ecological correlations

An alternative explanation has to do with 
the nature of the phenotype. Although we can-
not rule out mechanical reasons for our obser-
vations in figure 3, one key distinction merits 
attention. Educational attainment is a social 
phenotype. The very act of accruing years of 
education is a process that is typically pro-
vided by society and co-occurs with one’s age 
peers. These facts may help explain our find-
ings in a number of ways. Having neighbors 
more inclined themselves toward education 
may bolster the effects of existing public edu-
cation infrastructure because of greater sup-
port, via increased funding, for example, of 
educational programs. Such a mechanism is 
potentially related to the dual inheritance of 
genes and culture (Cavalli-Sforza and Feldman 
1981). To the extent that the educational PGS 
merely reflects subtle genetic stratification 
that itself is correlated with cultural (or other 
environmental) conditions associated with ed-
ucational attainment, what we report here 
could be confounded. Previous work uses sib-
ling models to show the robustness of the PGS 
within families (after breaking any ancestry-
PGS confounding) so at least some evidence 
suggests that the influence of confounding 
should be relatively limited (Domingue et al. 
2015; Conley et al. 2015; Rietveld et al. 2014). 
That said, confidence in a lack of confounding 
at the individual level may not easily translate 
to the aggregate level. Social mechanisms also 
have a role in the etiology of depression, but 
research on the extent to which the results 
from that GWAS are susceptible to confound-
ing is scant (Thoits 1995).

Findings related to the educational attain-
ment polygenic score are consistent with the 
existence of “social genetic effects” but not dis-
positive (Domingue and Belsky 2017; Baud et 
al. 2017; Rauscher, Conley, and Siegal 2015). 
Identification of compositional effects is chal-
lenging (Angrist 2014). As in earlier work, we 
rely on cross-phenotype comparisons to guide 
interpretation (Cohen-Cole and Fletcher 2008). 
In particular, we note a clear distinction be-

tween educational attainment and height-BMI. 
Findings observed here are similar to those ob-
served in another context in which the educa-
tional attainment PGS of schoolmates is asso-
ciated with educational attainment (Domingue, 
Belsky, Fletcher, Conley, Boardman, and Mul-
lan Harris 2017). In contrast, the genetics of 
school peers related to BMI and height were 
not predictive of phenotype. More research is 
needed to isolate the specific mechanism driv-
ing these findings and to tease out implications 
for spatial differences in education. This said, 
our findings raise questions about the extent 
to which educational attainment and BMI or 
height are phenotypes that are exchangeable 
in biologically informed analyses, such as a 
GWAS.

Our analysis has limitations. The primary 
limitation has to do with the nature of data 
available in the HRS. Given the nature of the 
HRS sampling, the geographic data is not fully 
representative. Specifically, because the HRS 
samples counties, it may be that all the respon-
dents from a state are drawn from a relatively 
urban county that does not reflect the diversity 
of residential experiences within the state. This 
limits our ability to understand anything about 
levels for a particular state, and whether differ-
ential migration or other mechanisms of selec-
tion occur more strongly at finer levels of ge-
ography. U.S. metropolitan areas are a natural 
candidate for examination given the recent in-
terest in smaller area mortality rates (Chetty et 
al. 2016). Finally, the phenotypes considered 
here are not clinical phenotypes and presum-
ably contain measurement error.
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