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Practices in STEM Lecture Courses

Global labor markets increasingly demand 
professionals with sophisticated skills in sci-
ence, technology, engineering, and mathemat-
ics (STEM) (Lansiquot et al. 2011; Vergara et al. 
2009). However, too few U.S. college graduates 
have these in-demand skills (Goldin and Katz 
2009; Levy and Murnane 2012). Instruction in 
undergraduate STEM courses may be partly to 
blame, as many are organized into large lec-
tures in which expert teachers transmit knowl-
edge with minimal student interaction; it is 
argued that this course design contributes to 
attrition from STEM majors during the first un-
dergraduate years (Baillie and Fitzgerald 2010; 
Kyle 1997; McGinn and Roth 1999; Mervis 2010; 

NAE 2005). In this study, we investigate the ef-
fectiveness of several instructional practices 
that have been proposed to reform large intro-
ductory STEM courses. Our study consists of 
one year of detailed observations of the in-
structional practices in forty sections of eight 
large introductory STEM courses at the Univer-
sity of California, Irvine (UCI). By linking these 
observations to administrative records of 
nearly five thousand undergraduates enrolled 
in these courses, we examine whether instruc-
tional practices identified as “promising” by 
leading national organizations influence stu-
dents’ course grades, odds of enrolling in the 
next STEM course, and their grades in the sub-
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sequent course (Nielsen 2011). Our analyses 
provide a preliminary look at the relationship 
between widely implemented promising in-
structional practices and student outcomes us-
ing a student-level cross-course fixed-effects 
design to control for time-variant observable 
student characteristics as well as time-invariant 
student characteristics. We find that students 
earn slightly higher grades in courses that use 
promising instructional practices. However, we 
find no evidence that promising instructional 
practices have longer-term achievement effects 
across the entire student population, with the 
exception of first-generation college students, 
who may derive some post-class benefits from 
exposure to promising instructional practices.

We draw on reports from the National Acad-
emy of Sciences (NAS) and the National Re-
search Council (NRC) in which promising prac-
tices were identified from a review of the 
research in undergraduate STEM education 
(Hake 1998; NAE 2005; Nielsen 2011; Wolter et 
al. 2011). We focus on three of the practices that 
figure prominently in the NAS/NRC recom-
mendations: explicit instruction in epistemol-
ogy or “thinking like a scientist,” formative and 
summative assessment, and group-based or 
interactive learning. Although these instruc-
tional practices have a strong theoretical basis 
and intuitive appeal, findings about the effec-
tiveness of these practices remain unclear. In 
particular, much of the research supporting 
promising instructional practices comes from 
evaluations of highly motivated and trained in-
structors in low-enrollment course settings or 
larger, discipline-specific studies (NAE 2005; 
Nielsen 2011). To address this gap, we system-
atically observe instruction across a variety of 
STEM disciplines and link these observations 
to student-level administrative data. Taking ad-
vantage of the instructional variation that we 
observe across these courses, we estimate the 
relation between exposure to instructional 
methods and grades in observed STEM 
courses, enrollment in subsequent courses to-
ward STEM degrees, and grades in subsequent 
STEM courses. By focusing analysis on stu-
dents who are exposed to multiple instruc-
tional styles across different classes and ob-
serving the extent to which this within-student 
variation is associated with variation in sub

sequent persistence and success in STEM 
courses, our approach makes it possible to sep-
arate the effects of these instructional prac-
tices from potentially confounding student 
characteristics.

Background
Demand for employees in STEM is projected 
to outpace demand for employees in other oc-
cupations (NSB 2010). However, the number of 
STEM graduates from U.S. higher education is 
not keeping pace (Felder, Felder, and Dietz 
1998; NSB 2010). Furthermore, STEM employ-
ers report that too many recent graduates are 
poorly prepared for the problem-solving tasks 
required in real-world applications (NAE 2005; 
Vergara et al. 2009).

Efforts to reform undergraduate STEM edu-
cation highlight the first two years of under-
graduate education as a critical period (Tinto 
2006; Upcraft, Gardner, and Barefoot 2005). 
During these early years, many American un-
dergraduates are enrolled in large lecture 
courses. Although these courses provide an ef-
ficient mechanism for disciplinary experts to 
communicate information, they may fail to 
provide adequate scaffolding for students to 
engage, learn, and experience success. Given 
this, many argue that traditionally organized, 
large lecture courses are ineffective settings for 
facilitating the skill development required for 
persistence in STEM majors (Mervis 2010). 
Many colleges and universities have begun to 
promote more active and engaged learning in 
the interest of improving scientific under-
standing and retention in STEM disciplines.

Several studies estimate associations be-
tween instructional practices and student out-
comes, including motivation and course satis-
faction, test performance, content retention 
and recall, and mastery of conceptual reason-
ing and problem-solving skills (Colliver 2000; 
Newman 2005; Chaplin 2009; Knight and Wood 
2005; Michael 2006; Dougherty et al. 1995; Gij-
bels et al. 2005; Strobel and van Barneveld 
2009, 43; Antepohl and Herzig 1999; Crouch 
and Mazur 2001; Deslauriers, Schelew, and 
Wieman 2011; Dochy et al. 2003; Lansiquot et 
al. 2011). This literature provides broad guide-
lines for instruction based primarily on small-
scale evaluations of promising instructional 
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practices on specific student outcomes such as 
problem-solving abilities (Singer, Nielsen, and 
Schweingruber 2012; Deslauriers, Schelew, and 
Wieman 2011). For example, one experimental 
study, in which students were randomly as-
signed either to instructors trained to facilitate 
student interaction or to one of the control 
course sections, indicates that interaction im-
proves students’ attendance, engagement, and 
conceptual knowledge (Deslauriers, Schelew, 
and Wieman 2011, 862).1 Although these results 
are encouraging and typical of other disci-
plines, the research literature is fragmented 
with little evidence assessing the extent to 
which practices effective in one discipline set-
ting (such as physics) can successfully transfer 
to other disciplinary settings (Singer, Nielsen, 
and Schweingruber 2012).

Extant studies of promising instructional 
practices in introductory STEM courses com-
monly feature instructors with extensive peda-
gogical training and interest, showcased in 
courses with relatively small enrollments and 
rich instructional resources (Han and Finkel-
stein 2013). A meta-analysis of 225 studies 
found that active learning increases student 
performance in science, engineering, and 
mathematics. Student performance included 
examinations and concept inventories (N = 158 
studies) and odds of failing the course (N = 67 
studies) (Freeman et al. 2014). Although this 
meta-analysis provides no data on the size of 
the study courses or the degree of instructional 
training, it notes that results are stronger when 
class size is under fifty and that instructors in 
these studies volunteered to incorporate active 
learning pedagogies. These studies suggest 
that altered instructional practices in introduc-
tory STEM courses can substantially improve 
student outcomes, but they provide only lim-
ited information on how efficient these prac-
tices are when implemented at scale in more 
typical learning environments (such as lecture 
halls of two hundred or more) at a research 
university.

Furthermore, the existing literature pro-
vides limited information regarding the effects 
of promising instructional practices on stu-

dents who are particularly at risk for attrition 
from STEM fields, including students who are 
the first in their families to attend college (Da-
vis 2012; Nunez and Cuccaro-Alamin 1998). 
Only 20 percent of students from underrepre-
sented groups who aspire to a STEM degree 
successfully graduate with one within five 
years; first-generation college students have 
lower undergraduate grade point averages 
(GPAs) and are less likely to persist in STEM 
than students of college-educated parents 
(Hurtado, Eagen, and Chang 2010; Vuong, 
Brown-Welty, and Tracz 2010; Ishitani 2006; 
Aspelmeier et al. 2012; Chen 2005; DeFreitas 
and Rinn 2013; Martinez et al. 2009). The first 
two years are crucial in narrowing the gap for 
these at-risk students; instructional practices 
may play a role (Chen 2005).

We evaluate three broad categories of prom-
ising instructional strategies implemented at 
scale in large lecture courses: teaching episte-
mology explicitly and coherently; using forma-
tive and summative assessments; and group-
based or interactive learning. This work builds 
on a related study analyzing undergraduate 
survey data from the eight large University of 
California campuses, which found that cul-
tures of engagement varied by major into two 
categories related to the purpose of the degree 
for upper division students (Brint, Cantwell, 
and Hanneman 2008). Our study uses data 
from course observations and syllabi to cap-
ture the extent to which instructors in lower 
division STEM courses implement these prom-
ising instructional practices and the impact 
they may have on student achievement.

The NAS identified “teaching epistemology 
explicitly and coherently” as a promising prac-
tice for undergraduate STEM instruction 
(Nielsen 2011, 24). We define epistemology as 
understanding the concepts, separating fact 
from opinion, and critically analyzing con-
cepts (Goldman 1986). For example, instructors 
might teach epistemology by modeling 
problem-solving techniques during lecture and 
guiding analysis of concepts—sometimes re-
ferred to as “thinking aloud.” In other cases, 
they might teach epistemology by describing 

1. In the experimental section, 211 of 271 students attended the day of the test, versus 171 of 267 for the control 
section. All students were offered extra credit for their time.
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a key concept’s intellectual history and its rel-
evance to their research or to the field more 
broadly (DeLuca and Lari 2013; Pace and Mid-
dendorf 2004). Explicit coherent teaching in-
cludes systematically rearranging course con-
tent according to students’ epistemological 
awareness and metacognition and strategically 
addressing science misconceptions prevalent 
among undergraduates (Grant 2008). To illus-
trate, instructors can intentionally refer to 
prior course content and big ideas, provide re-
inforcement through exam content, and con-
nect content with everyday experience, helping 
students reframe understanding.

The NAS report advocates use of structured 
evaluations to improve undergraduate STEM in-
struction “using formative assessment tech-
niques and feedback loops to change practice” 
as well as “developing learning objectives and 
aligning assessments with those objectives” 
(Nielsen 2011, 24). Formative assessments offer 
immediate feedback to both student and in-
structor. This feedback allows instructors to 
modify their teaching based on current student 
understanding and allows students to modify 
their study strategies (Black 2013; Harlen and 
James 1997). Formative assessment occurs when 
instructors check for students’ understanding 
(via clicker questions and in-class exercises) and 
modify the lecture accordingly (Han and Fin-
kelstein 2013). Instances of effective summative 
assessment include repeated use of graded ex-
ams, quizzes, and homework (Black 2013; Har-
len and James 1997). These allow the instructor 
to ensure that learning objectives and assess-
ments are properly aligned. Summative assess-
ments also provide feedback so that students 
can modify their study strategies.

Interactive lectures provide opportunities 
for students to interact with peers and instruc-
tors (Singer, Nielsen, and Schweingruber 2012). 
Promising practices designed to improve inter-
action in lectures include: “allowing students 
to ‘do’ science, such as learning in labs and 
problem solving,” “providing structured group 
learning experiences,” and “promoting active, 
engaged learning” (Nielsen 2011, 24). Student-
centered approaches create opportunities for 
students to collaborate over a single problem, 
or for more extended periods in a “flipped for-
mat” (Garcia, Gasiewski, and Hurtado 2011; 

Stage and Kinzie 2009). In addition to instruc-
tional reform, course structure reform—such 
as the addition of a lab section—provides 
added opportunity for collaboration (Nasr and 
Ramadan 2008; Farrior et al. 2007; Khousmi 
and Hadjou 2005).

Method
Our study uses systematic observations of in-
structional practice in large introductory STEM 
lecture courses from the Schools of Biological 
and Physical Sciences at UCI during the Spring 
2013, Fall 2013, and Winter 2014 quarters. UCI 
is a highly selective institution and these 
schools are among the fastest-growing units 
on campus. Together, they enroll 55 percent of 
UCI undergraduates and 95 percent of UCI un-
dergraduates in STEM fields. Enrollment for 
these schools has increased by 20 percent be-
tween 2003 and 2012. Over the same period, 
UCI’s student population has undergone sub-
stantial demographic changes. Currently, 55 
percent of UCI students are first-generation 
college students and 30 percent are members 
of underrepresented minority groups (UC Ir-
vine Office of Institutional Research 2013).

Although more than 95 percent of UCI un-
dergraduates earn a bachelor’s of arts (BA) 
within six years, many students who begin as 
STEM majors transfer to other disciplines. Af-
ter six years, fewer than half of incoming fresh-
men in the School of Physical Sciences earn a 
baccalaureate degree from that school, while 
retention rates of majors in Biological Sciences 
hover at approximately 60 percent (UC Irvine 
Office of Institutional Research 2013). In an ef-
fort to improve STEM persistence, both schools 
are undertaking instructional reforms. How-
ever, considerable instructional variation ex-
ists at UCI both across courses and even across 
sections of the same course. Course instruc-
tors have considerable discretion over their 
pedagogical methods. In many cases, lectur-
ers—a category of instructors that includes ad-
juncts as well as teaching professors with se-
curity of employment—are leaders in the 
adoption of promising instructional practices.

By linking data from our observations of in-
struction in large gateway lecture courses with 
student-level administrative data, we take ad-
vantage of variation in instruction across sec-
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tions of the same course to conduct a nonex-
perimental, population-based evaluation of 
the extent to which promising instructional 
practices promote positive student outcomes 
during the first two years.

Sample and Procedure
We observed instruction in forty introductory 
STEM courses at UCI. Our study identified all 
courses in the School of Biological Sciences 
and Physical Sciences that were prerequisites 
for other mandatory courses in one or more 
STEM major, were offered in multiple sections 
during the course of the year, and enrolled two 
hundred or more students. Eight courses met 
these criteria: Biological Sciences, From DNA 
to Organisms (BioSci 93), General Chemistry 
(Chem 1A, 1B, and 1C), Organic Chemistry 
(Chem 51A and Chem 51B), Single-Variate Cal-
culus (Math 2A), and Classical Physics (Phys 
7C).2 It is useful to note that the courses in our 
sample play somewhat different roles on cam-
pus. Introductory Biology (BioSci 93) is the first 
of several mandatory courses for the Biology 
major. Similarly, the general chemistry series 
and organic chemistry courses are required for 
several STEM majors. By contrast, a lower pro-
portion of students are required to take the 
next course in the sequence for Mathematics 
2A and Physics 7C. During the year of the study, 
the university offered forty-two sections of 
these courses; forty sections participated in 
the study. Trained research assistants observed 
one course session in the first three weeks and 
one course session in the last three weeks of 
regular instruction. An overview of the course 
sample is presented in table 1.

For each observation, research assistants 
videotape lectures and collect data on instruc-
tional strategies using a researcher-developed 
observation protocol known as Simple Proto-
col for Observing Undergraduate Teaching 
(SPROUT).3 Observations include detailed field 

notes during the lecture that are subsequently 
transferred to the observation protocol and 
contain both dichotomous indicators and 
qualitative evidence. Two researchers over-
lapped on 20 percent of the course sessions 
with inter-rater reliability of Cohen’s kappa = 
0.80. Coding disagreements and ambiguities 
were discussed among the research team as 
they occurred during the data collection pro-
cess. Course materials such as syllabi and key 
handouts are also collected to identify content 
related to epistemology, assessment, and in-
teraction.

Student administrative data was collected 
from the Office of Institutional Research (OIR). 
Our sample is diverse—58 percent are first-
generation college students, 26 percent are 
members of underrepresented minority 
groups, and 56 percent are female. In addition 
to demographic and academic data, OIR pro-
vides course enrollments and grades (both in 
observed courses and in courses that students 
take in subsequent terms), allowing us to track 
student progress toward STEM degrees. The 
sample consists of UCI freshmen and sopho-
mores attending one or more focal (that is, ob-
served) courses. As few transfer students enroll 
in these introductory courses, they are ex-
cluded from analysis. The total sample in-
cludes 4,801 students. Students can enroll in 
more than one of the observed courses; thus a 
single student can provide more than one case 
and the analysis file includes 11,803 distinct ob-
servations.

Measures
The present study considers the relation be-
tween instruction and three measures of stu-
dent success: student grades in the observed 
course (measured on a four-point scale, where 
an A is 4.0 and an F is 0.0), student odds of 
enrolling in subsequent courses toward STEM 
degrees, and student grades in subsequent 

2. Organic Chemistry is a three-course sequence. However, no specific course follows the third course in the 
sequence and so we included only the first two courses in our analyses, using the third only in our measures of 
course progression and subsequent course grades.

3. SPROUT adapted content from three well-known observation protocols: U-Teach Observation Protocol,  or 
UTOP (Walkington et al. 2012); the Reformed Teaching Observation Protocol, or RTOP (Sawada et al. 2002); 
and Teaching Dimensions Observation Protocol, or TDOP (Hora and Ferrare 2014). SPROUT is available online 
at http://www.projectsprout.education.uci.edu (accessed February 23, 2016).
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STEM courses.4 Course syllabi indicate that 
grades in these classes were not curved to the 
mean, but rather on a straight point scale (Car-
rell and West 2008). Each of the observed 
courses serves as a prerequisite for another 
course in the same field. For example, students 
are required to successfully complete BioSci 93 
to enroll in BioSci 94. Our subsequent enroll-
ment outcome is a dichotomous measure of 
whether the student completed the subse-
quent course during the next academic term.5 
Our third outcome is the student’s grade in 

that subsequent course, conditional on enroll-
ment in the subsequent course and measured 
on a four-point scale.

We create composites for three instruc-
tional variables of interest: epistemology, as-
sessment, and interaction. Items from ob-
served lectures at both time points are summed 
to create a course composite measure. In these 
analyses, we assume that instructional prac-
tices are consistent across sections taught by 
the same instructor.6 Correlation tables for the 
variables between the first and second obser-

Table 1. Description of Full Sample

Variable
Total

Observations
Total 

Students
Mean/
Percent

Standard 
Deviation Minimum Maximum

Epistemologya 11,803 4,801 0.00 1.00 –1.62 1.70
Assessmenta 11,803 4,801 0.08 0.96 –1.00 2.60
Interactiona 11,803 4,801 0.06 0.99 –1.07 2.36

Math SATa 11,494 4,610 0.00 1.00 –3.77 2.16
Verbal SATa 11,494 4,610 0.00 1.00 –3.49 2.72
High school GPAa 11,786 4,789 0.00 1.00 –5.50 2.39
Focal course AP 11,803 4,801 0.30 0.46 0.00 1.00

Male 11,791 4,792 0.42 0.49 0.00 1.00

Black 11,791 4,792 0.02 0.12 0.00 1.00
Hispanic 11,791 4,792 0.21 0.41 0.00 1.00
Nonresident 11,791 4,792 0.09 0.29 0.00 1.00
White 11,791 4,792 0.12 0.32 0.00 1.00
Other 11,803 4,801 0.03 0.18 0.00 1.00
Low-income status 11,791 4,792 0.40 0.49 0.00 1.00
First-generation college 11,791 4,792 0.55 0.50 0.00 1.00

Focal course in major 11,803 4,801 0.63 0.48 0.00 1.00

Full-time student 11,803 4,801 1.00 0.07 0.00 1.00
Freshman 11,791 4,792 0.96 0.19 0.00 1.00
Repeating course 11,803 4,801 0.02 0.13 0.00 1.00

Source: Author’s calculations.
Note: Observations are repeated cases of students because students are enrolled in one or more ob-
served courses.
aDenotes scores are standardized. Asians were used as the reference group, as the university is 
considered a minority majority university (nearly 50 percent Asian). All others are dummy variables. 

4. Although many studies on instructional practices use concept inventories or examinations, these were not 
available in this observational cross-disciplinary study.

5. The full sample was used to analyze whether students completed the subsequent course; the student fixed 
effects sample was used to analyze grade in observed and subsequent course.

6. We tested this assumption by observing multiple course sections taught by three instructors. These observa-
tions returned a high degree to consistency within instructors across classes, with observations of instructional 
practices correlating at the 0.93 level across sections.
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vation are included in appendix C. Because of 
the limited number of observed courses, a con-
firmatory factor analysis on the measurement 
model was not possible. As a result, we con-
ceptualize our measures as indices or compos-
ites rather than as latent variables. The three 
measures capture the degree to which instruc-
tors engage in each of the three broad catego-
ries of instructional practices rather than indi-
cators of how well instructors implement these 
practices (instructional quality).

The epistemology scale measures the extent 
to which instructors taught epistemology ex-
plicitly and coherently. We use five items from 
SPROUT to assess whether the instructor: 
models problem-solving techniques; makes 
connections between the course material and 
everyday student experience; refers to what 
students learned in prior course content; ex-
plicitly refers to themes, major theories, or 
other “big ideas” in the course; and refers ex-
plicitly to content on an upcoming exam. 
Summed across time points, epistemology 
practices range from 3 to 8 with a mean of 5.76 
and standard deviation of 1.84 (alpha = 0.54). 
The correlation of the measure across both 
time points is 0.33. While some instructors en-
gage in these activities relatively consistently 
across the instructional quarter, others refer to 
prior course content more in the beginning 
and “big ideas” at the end.

To measure assessment practices within the 
course, we use four items from SPROUT and 
four items from coded course syllabi. Assess-
ment items include whether students take a 
quiz during study observations; whether in-
structor measures student understanding; 
whether instructor modifies lecture content as 
a result of measuring student understanding; 
number of clicker questions during the ob-
served lectures; whether course has online 
homework; whether course has traditional 
homework; number of weekly quizzes; and 
number of exams. Across both time points, as-
sessment practices range from 3 to 23 with a 
mean of 7.46 and a standard deviation of 5.28 
(alpha = 0.70). The correlation of observed as-
sessment practices across both time points is 
0.69.

To measure instructional practices related 
to interaction, we use four items from SPROUT 

and one item from the coded syllabi. These 
include whether the lecture is interactive in-
clusive of student-peer or student-instructor 
exchanges; whether the instructor asks stu-
dents to work in groups; whether work is con-
ducted during the lecture; whether the course 
uses a flipped format; and whether a labora-
tory section is associated with the lecture. 
Across both time points, group-based or inter-
active practices range from 0 to 6 with a mean 
of 1.70 and standard deviation of 1.57 (alpha = 
0.61). The correlation of group-based or inter-
active practices observed across both time 
points is 0.74.

To ease interpretation, we standardize the 
instructional variables and create z-scores. Be-
cause alphas of the constructs were relatively 
low, we estimate additional models using the 
individual items which constitute each of the 
scales. We note the results of these models 
when they are significantly different from zero 
in appendix B.

Where appropriate, analyses use demo-
graphic data collected from OIR, including 
gender (male or female), ethnicity (Asian 
American, African American, Hispanic, white, 
and other), first generation to attend college, 
and income status. Student academic charac-
teristics are measured using weighted high 
school grade point average, mathematics and 
verbal SAT scores, and whether or not students 
took an advanced placement exam correspond-
ing with the observed course. To ease interpre-
tation, we standardize all continuous variables 
and create z-scores.

Analyses
The first analytic step involves descriptive in-
vestigation regarding the extent to which in-
struction and student outcomes vary across 
course sections. Observable student character-
istics are associated with student exposure to 
three broad instructional variables, which may 
be a concern for interpreting the relation be-
tween exposure to instruction and academic 
outcomes.

After considering the student factors that 
predict exposure to promising instructional 
practices, we consider the relation between 
these practices and student achievement. We 
conduct a series of logistic and ordinary least 
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squares regressions of the following basic 
form:

(1) Yi = �β0 + β1Instruction + β2Covariatesi  
+ ∑β3Course + ∑β4T + ε

where Yi is the outcome of interest (odds of 
taking next course in STEM sequence). Instruc-
tion is the composite score for the specific in-
structional practice. Covariates represents a 
vector of student-level controls described 
above, including college enrollment year, 
transfer status, high school grade point aver-
age, SAT scores, gender, first generation to at-
tend college, low income status, whether or 
not the student is repeating the course, and 
ethnicity. Course includes a matrix of course-
title fixed effects designed to control for as-
pects of content, instruction, and student be-
havior that do not vary across sections of the 
same course.

We use a student fixed-effects model to 
more reliably identify the causal effects of in-
struction on grade in observed and subsequent 
course. This includes a high school fixed-effect 
term controlling for characteristics of high 
schools attended before matriculation at UCI. 
It may be that students from the same high 
school have similar preparation or prior knowl-
edge that affects their performance, and to the 
extent that students from the same high school 
enroll together in the same sections of 
introductory-level courses, and that high 
school characteristics could confound analysis 
of instructional practices. These analyses take 
advantage of the fact that many students are 
enrolled in multiple courses that we observe. 
For example, typical first-year biology majors 
at UCI might enroll in as many as four ob-
served courses (introductory biology, general 
chemistry, organic chemistry, and calculus). 
Repeated observations make it possible to ac-
count for observed and unobserved student 
characteristics and behaviors that are constant 
within a student, and thus more reliably esti-
mate the extent to which exposure to promis-

ing instructional practices influences student 
academic behavior in that course and the sub-
sequent course, net of observed and unob-
served student characteristics (for analyses us-
ing a very similar design in public high school 
settings, see Clotfelter, Ladd, and Vigdor 2007; 
Xu, Hannaway, and Taylor 2011). These models 
take the following general form:

(2) Yij = �β0 + β1Instructioni + ∑β2Coursei  + 
∑β3Covariates + ∑β4Studenti + ε

In this equation, Yij is the outcome of inter-
est: student grades in focal course j and stu-
dent grades in which focal course j is a prereq-
uisite. Student in this model is a matrix of 
student fixed effects, controlling for all char-
acteristics of students that are fixed across 
courses, including observable characteristics 
such as student race, gender, and economic 
and academic background, as well as invariant 
student characteristics such as intelligence 
and motivation.7 The parameter of interest in 
this model, Instruction, therefore estimates the 
extent to which exposure to a given instruction 
technique in a given course influences a stu-
dent’s achievement in that course (along with 
subsequent course) when compared with other 
observed courses also taken by that student.

Model 2 provides more internally valid esti-
mates of the causal effects of exposure to in-
struction than model 1. To be included in the 
student fixed-effects model, students must 
take at least three observed courses, which en-
sures that students take courses in more than 
one discipline. For example, rather than just 
Chem 1A and Chem 1B, a student taking three 
or more courses might also take BioSci 93. 
Nearly half of the students meet this criterion 
and thus contribute to the student fixed-effects 
analyses. Although the students in the fixed-
effects sample do not differ significantly from 
students in the whole sample on demographic 
characteristics, they do score higher on several 
measures of prior achievement and include 
more STEM majors than the full sample. Table 

7. Because student characteristics such as race and family background do not vary across course observations, 
model 2 excludes many of the student-level controls that our multivariate models include. However, the model 
includes controls for student characteristics that do vary across courses, including indicators of whether students 
completed AP courses relevant to the focal course and whether they are repeating the course.
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1 provides descriptive statistics for the full 
sample and table 2 provides descriptive statis-
tics for the student fixed-effects sample.8 It is 
possible that the student fixed-effects model 
does not fully address the selection issues, be-
cause students may be more or less highly mo-
tivated by specific classes. However, by isolat-
ing instructional effects for individual students, 
it is the best approach to reliably identify the 
causal effects of instruction on observed and 
subsequent course.

In supplementary analyses, we add a series 
of instruction*first-generation student interac-
tion terms to our student fixed-effects models. 
These interactions estimate the extent to which 
the association between instruction and stu-

dent outcomes is different for students who 
are the first in their families to enroll in college 
compared with their peers who have more ex-
tensive exposure to higher education settings.

Results
We include descriptive data on courses and in-
structional practices, followed by associations 
between these practices and student out-
comes.

Instructional Variation  
Across and Within Courses
Table 3 provides a description of sample size 
by course, along with percent of students in 
each course who progress to the next course. 

Table 2. Student Fixed-Effects Sample: Students in Three or More Observed Courses

Variable Observations Students
Mean/
Percent

Standard 
Deviation Minimum Maximum

Epistemologya 8,303 2,382 –0.01 1.00 –1.62 1.70
Assessmenta 8,303 2,382 0.12 0.98 –1.00 2.60
Interactiona 8,303 2,382 0.07 1.03 –1.07 2.36

Math SATa 8,216 2,353 0.02 0.96 –3.29 2.16
Verbal SATa 8,216 2,353 0.05 0.97 –3.38 2.72
High school GPAa 8,297 2,379 0.10 0.90 –4.59 2.14
Focal course AP 8,303 2,382 0.32 0.46 0.00 1.00

Male 8,297 2,379 0.42 0.49 0.00 1.00
Gender unknown 8,297 2,379 0.00 0.05 0.00 1.00

Black 8,297 2,379 0.02 0.12 0.00 1.00
Hispanic 8,297 2,379 0.20 0.40 0.00 1.00
Nonresident 8,297 2,379 0.08 0.26 0.00 1.00
White 8,297 2,379 0.12 0.32 0.00 1.00
Other 8,303 2,382 0.03 0.18 0.00 1.00
Low-income status 8,297 2,379 0.41 0.49 0.00 1.00
First-generation college 8,297 2,379 0.55 0.50 0.00 1.00

Focal course in major 8,303 2,382 0.71 0.45 0.00 1.00

Full-time student 8,303 2,382 1.00 0.06 0.00 1.00
Freshman 8,297 2,379 0.99 0.12 0.00 1.00
Repeating course 8,303 2,382 0.02 0.14 0.00 1.00

Source: Author’s calculations.
aDenotes scores are standardized. Asians were used as the reference group because the university is 
considered a minority majority university (nearly 50 percent Asian). All others are dummy variables. In 
the Mean/Percent column, decimals for dummy variables show the percentage of students in that 
category. 

8. All models use the Huber-White estimator to correct for clustering at the course section level.
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Because these courses are effectively a program 
gateway, administrators and instructors meet 
regularly to discuss course syllabi, instruc-
tional materials, and content. These conversa-
tions limit instructor freedom to define course 
content, but instructors have considerable au-
tonomy over instructional strategies.

Table 4 provides descriptive data for three 
instructional measures (epistemology, assess-
ment, and interaction). Observed instruction 
varies in important ways across disciplines and 
courses. Because all biology and physics course 
sections use clickers, courses in these fields 
rate higher than courses in other disciplines 
on the assessment scale. Biology has the high-
est mean on the interaction index, whereas 
Chem 51A and Chem 1C generate the highest 
means on the epistemology scale. Chem 1B 
and Math 2A yield the lowest means for all 
three instructional measures.

Most instructional practices also vary sub-
stantially across sections within the same 
course. Although BioSci 93 course sections in-
volve more interactive instruction on average 
than other courses, we observe considerable 
variation in the prevalence of interactive in-
struction among the six BioSci 93 sections. In-
deed, the standard deviation for the interactive 

instruction among BioSci 93 students (1.41) is 
larger than that for interactive instruction in 
the overall sample (1.00). This variation across 
course sections is important for our identifica-
tion strategy given that we include course fixed 
effects. Less variation is evident in the use of 
formative and summative assessments across 
course sections relative to the variation across 
course sections in interactive instruction and 
explicit instruction about epistemology. In-
deed, for Chem 1C we observe no variation in 
the use of assessment across course sections. 
Such within-course homogeneity makes it par-
ticularly difficult to identify the effects of as-
sessment on student outcomes.

Student Selection into  
Instructional Environments
Because we cannot randomly assign students 
to classes, values in table 5 show the extent to 
which observable student characteristics pre-
dict instructional strategies used in the class-
room. These analyses include controls for 
course titles, which explain between 50 percent 
and 80 percent of the observed variation in in-
structional exposure.9

Exposure to explicit epistemological in-
struction and assessment do not seem to vary 

Table 3. Students Enrolled in Focal Course and Subsequent Course

Number of 
Course 

Sections
Number of 
Instructors

Number of 
Students

Enrolled in 
Subsequent 

Course

Number of 
Students with 
Subsequent 

Course Grade

Biological Sciences 93 6 6 1,931 72.14% 1,393
Chemistry 1A 7 5 2,488 67.73% 1,685
Chemistry 1B 5 4 1,765 72.69% 1,283
Chemistry 1C 4 2 1,377 72.11% 993
Chemistry 51A 4 4 1,186 75.21% 892
Chemistry 51B 3 3 847 80.40% 681
Mathematics 2A 7 5 1,253 49.48% 620
Physics 7C 4 4 956 43.62% 417
Total 40 31 11,803 67.48% 7,964

Source: Author’s calculations.

9. Supplementary models using observable student characteristics to predict exposure to three instructional 
strategies (excluding course title controls) explain only 2 to 3 percent of the variance, but return similar relation-
ships between student characteristics and instructional exposure.
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substantially with observable student charac-
teristics. However, we find that men, Hispanic 
students, nonresident international students, 
and students retaking a course (after failing it) 
are exposed to more interactive instruction 
than peers, conditional on other observable 
characteristics. Students’ SAT math scores are 
negatively associated with exposure to interac-
tive instruction after controlling for other stu-
dent characteristics. This suggests that some 
at-risk students and students who previously 
failed tend to choose courses with relatively 
high levels of interactive instruction.

Associations Between Instruction and 
Student Outcomes
Figure 1 shows student rates of progression to 
the next course in the sequence after control-
ling for student characteristics. BioSci 93 has 
more than 85 percent of students successfully 
progressing to the next course in the program 
sequence, despite the fact that instructional 
practices vary considerably across biology sec-
tions. By contrast, we observe considerable 
variation in progression rates for students in 
Chem 1A and 1B (general chemistry) as well as 
Math 2A. In Math 2A, for example, we observe 

Table 4. Instructional Variation Across and Within Courses

Mean
Standard 
Deviation Minimum Maximum

Epistemology scale
Biological Sciences 93 –0.78 0.31 –1.06 0.04
Chemistry 1A 0.53 1.03 –1.62 1.15
Chemistry 1B –0.71 0.39 –1.06 0.60
Chemistry 1C 0.84 0.27 0.60 1.15
Chemistry 51A 1.02 0.77 0.04 1.70
Chemistry 51B –0.08 1.36 –1.62 1.70
Mathematics 2A –0.60 0.82 –1.62 0.60
Physics 7C –0.11 0.25 –0.51 0.04

Assessment scale
Biological Sciences 93 1.41 0.82 0.62 2.60
Chemistry 1A 0.30 0.64 –0.82 0.80
Chemistry 1B –0.61 0.15 –0.64 0.08
Chemistry 1C –0.64 0.00 –0.64 –0.64
Chemistry 51A –0.68 0.25 –1.00 –0.46
Chemistry 51B –0.68 0.14 –0.82 –0.46
Mathematics 2A –0.33 0.44 –1.00 0.26
Physics 7C 1.31 0.54 0.98 2.60

Interaction scale
Biological Sciences 93 0.88 1.43 –0.50 2.36
Chemistry 1A 0.51 0.83 –1.07 1.22
Chemistry 1B –0.88 0.32 –1.07 0.74
Chemistry 1C –0.57 0.57 –1.07 0.74
Chemistry 51A 0.15 0.53 –0.50 0.64
Chemistry 51B –0.14 0.28 –0.50 0.07
Mathematics 2A –0.34 0.43 –0.45 0.19
Physics 7C 0.42 0.74 –1.07 1.22

Source: Author’s calculations.

r s f :  t h e  r u s s e l l  s a g e  f o u n d at i o n  j o u r n a l  o f  t h e  s o c i a l  s c i e n c e s



	 p r a c t i c e s  i n  s t e m  l e c t u r e  c o u r s e s 	 2 2 3

Table 5. Selection by Observables with Course Fixed Effects

Epistemology 
b/se

Assessment 
b/se

Interaction 
b/se 

Male 0.002 0.018 0.038*
(0.015) (0.010) (0.016)

Gender unknown 0.152 –0.008 0.124
(0.115) (0.112) (0.153)

Standardized SAT math –0.001 –0.009 –0.024*
(0.009) (0.006) (0.010)

Standardized SAT verbal 0.009 0.009 0.012
(0.008) (0.005) (0.009)

Standardized high school GPA –0.004 0.001 –0.009
(0.008) (0.006) (0.004)

Whether AP in focal course –0.017 0.013 –0.024
(0.015) (0.011) (0.017)

Black 0.019 –0.064 –0.111
(0.060) (0.042) (0.066)

Hispanic 0.028 0.032* 0.058**
(0.019) (0.013) (0.021)

Non-resident 0.061* 0.036 0.053
(0.028) (0.019) (0.029)

White –0.006 –0.018 –0.016
(0.023) (0.016) (0.027)

Other ethnicity 0.026 0.011 0.004
(0.037) (0.025) (0.041)

Whether focal course was a major requirement 0.036* –0.008 –0.037*
(0.015) (0.011) (0.017)

Whether student was fulltime –0.065 –0.103 0.056
(0.095) (0.080) (0.130)

Whether student was freshman –0.159* –0.044 0.021
(0.070) (0.046) (0.075)

Whether student repeated the course –0.020 –0.049* 0.487***
(0.051) (0.023) (0.031)

Whether student was low-income status 0.047** 0.007 0.004
(0.016) (0.011) (0.018)

Whether student was first to attend college –0.031 –0.028* –0.040*
(0.016) (0.011) (0.018)

Constant –0.585*** 1.552*** 0.823***
(0.115) (0.094) (0.151)

N 11,493 11,493 11,493
R2 0.462 0.726 0.375

Source: Author’s calculations. 
Note: Asians were used as the reference group, as the university is considered a minority majority uni-
versity (nearly 50% Asian). 
*p < .05; **p < .01; ***p < .001
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several course sections in which fewer than 
half of students progress to the next course in 
the sequence, as well as sections in which ap-
proximately 70 percent of the students prog-
ress to the next course in the sequence. How-
ever, many STEM majors are not required to 
take the subsequent course, Math 2B.

Figure 2 depicts the average grade earned 
in the subsequent course for those students 
who successfully progress, conditional on stu-
dent characteristics. Grades prove to be rela-
tively consistent in biology regardless of in-
structional practices for each section. This is 
not surprising as biology faculty standardized 
their grading. However, grades in chemistry 
and mathematics have larger standard devia-
tions. Table 6 presents a series of analyses re-
gressing student outcomes on instructional 
practices using the student fixed-effects sam-
ple (2,382 unique students; 4,762 observations). 
For external validity, we include analyses of the 
full sample in appendix C (4,801 students; 
11,803 observations).

Grades in the observed course
The first panel considers the link between in-
structional practices and student grades in the 

observed course. Whereas the first two models 
indicate no significant link between epistemol-
ogy or interaction and student grades, the 
third model (including all controls) suggests 
that students achieve higher grades in courses 
higher on epistemology (0.024, p < 0.05). In 
particular, subsequent analyses (see appendix 
B) of the five items comprising the epistemol-
ogy scale point to positive effects on course 
grades for drawing connections to the real 
world (0.034, p < 0.01) and highlighting the “big 
picture” (0.073, p < 0.05). However, problem 
solving has a negative effect on observed 
course grade (–0.072, p < 0.05). The third model 
also suggests that students achieve higher 
grades in courses with increased interaction 
(0.031, p < 0.01). Of the five items making up 
this scale, subsequent analyses show that lec-
tures inclusive of student-peer or student-
instructor exchanges point to positive effects 
on course grades (0.067, p < 0.001). All three 
models suggest a similar positive effect on 
grades for courses that use more assessments 
(0.048, p < 0.01). In particular, subsequent anal-
yses of the eight items this scale comprises 
point to a strong relation between the use of 
whole-class checks for understanding and 
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Figure 1. Probability of Taking Next Course in Series
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grades (0.085, p < 0.01), such as a clicker ques-
tion or asking all students to respond by rais-
ing their hands. Grade in current course may 
be problematic, however, because there may 
be a relationship between instructional prac-
tices and instructor grading policies.

Course Progression
To consider the relation between instructional 
practices and student odds of progressing to 
the next course in the STEM sequence, we used 
the full sample (see appendix A). Because the 
outcome for this analysis is dichotomous (in 
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Figure 2. Average Student Grade in Subsequent Course

Table 6. Effects of Instruction on Student Grades in Observed and Subsequent Course

Bivariate
+ Student Level 

Controls
+ High School 
Fixed Effects

Outcome: grade in observed course
Epistemology 0.019 0.017 0.024*

(0.011) (0.011) (0.012)
Assessment 0.036* 0.040* 0.048**

(0.016) (0.016) (0.018)
Interaction 0.014 0.017 0.031**

(0.011) (0.010) (0.012)

N 4,762 4,744 4,744

Outcome: grade in subsequent course
Epistemology –0.017 –0.017 –0.011

(0.011) (0.011) (0.013)
Assessment 0.007 0.010 0.017

(0.018) (0.018) (0.020)
Interaction 0.006 0.011 0.020

(0.012) (0.012) (0.013)

N 4,762 4,744 4,744

Source: Authors’ calculations.
Note: Standard errors in parentheses. N represents all observations for 2,382 unique students.
*p < .05; **p < .01; ***p < .001
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which students who enroll in the next course 
in the instructional sequence take a value of 1 
and students who do not take a value of 0), we 
observe little variation among students who 
enroll at UCI from the same high school and 
even less variation applies to a single student. 
Therefore, we are unable to estimate high 
school or student fixed-effects models consid-
ering the link between instruction and student 
progression. However, the multivariate models 
reported in appendix A indicate that students 
who enroll in courses with frequent assess-
ment and high levels of interactive instruction 
are significantly less likely to progress to the 
next course in the STEM sequence compared 
with peers in courses with lower values of these 
promising instructional practices. However, 
subsequent analyses point to a strong positive 
relation between problem solving and odds of 
progressing to the next course (0.182, p < 0.01) 
(see appendix B).

Grades in Subsequent Course
Perhaps the most powerful indicator of the ex-
tent to which instruction influences students’ 
acquisition and retention is the association be-
tween instruction and grades in subsequent 
courses. These relations are presented in the 
second panel of table 6. The results from the 
third model indicate no relation between the 
three promising instructional practices and 
student achievement in subsequent courses. 
Supplemental analyses point to a positive as-
sociation between problem solving in the cur-
rent course and grade in the subsequent course 
(0.097, p < 0.01). Although suggestive, the mul-
tiple comparisons problem applies to these 
supplemental analyses, in which we test the 
effects of twelve instructional variables.

Table 7 provides some evidence to suggest 
that these instructional practices have differ-
ential effects for an important student sub-
group—first-generation college students. We 
include an interaction term to allow the asso-
ciation between instruction and subsequent 
student achievement to vary between first-
generation college students and peers with 
college-educated parents. We find that first-
generation students experience significantly 
higher gains in subsequent course grades than 
their counterparts when exposed to frequent 

assessment (0.065, p < 0.01) and interactive in-
struction (0.057, p < 0.01), but not explicit in-
struction in epistemology.

Discussion
This study aims to evaluate the effects of three 
widely agreed-upon promising practices—ex-
plicit instruction in epistemology or “thinking 
like a scientist,” formative and summative as-
sessment, and group-based or interactive 
learning—as implemented at scale in large un-
dergraduate introductory STEM courses 
(Nielsen 2011, 24). Small-scale studies and 
discipline-specific studies suggest these strate-
gies have potential for improving student out-
comes (Hake 1998; NAE 2005; Nielsen 2011; 
Wolter et al. 2011). However, in the current 
study, which investigates these practices in 
large undergraduate STEM courses typical of 
major research universities, we find little evi-
dence to suggest that promising instructional 
practices improve student outcomes for the av-
erage UCI student. UCI is a single example and 
not generalizable to all undergraduate STEM 
universities. Yet the university is fairly typical 
of at least one important segment of the Amer-
ican higher education system—the large re-
search university. Close examination of prom-
ising instructional strategies at this large, 
decentralized institution is capable of provid-
ing new insights regarding promising instruc-
tional strategies implemented at scale.

Table 7. Effects of Instruction on First-Generation 
College Student and Grade in Subsequent 
Course

Epistemology*First Generation Status 0.002
(0.018)

Assessment*First Generation Status 0.065**
(0.024)

Interaction*First Generation Status 0.057**
(0.021)

N 4,744

Source: Authors’ calculations.
Note: Standard errors in parentheses. N repre-
sents all observations for 2,382 unique students.
*p < .05; **p < .01; ***p < .001
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We use variation across sections of the same 
course to illustrate the effects of promising in-
structional practices on student grades in their 
current course, course progression, and subse-
quent grades. Our findings suggest that the re-
lation between instructional practices and stu-
dent outcomes is weak. Regardless of the extent 
to which instructors use promising instruc-
tional practices, student outcomes are fairly 
similar across course sections. Our most con-
servative student fixed-effects models suggest 
that students earn slightly higher grades in 
courses where instructors use explicit episte-
mological instruction, frequent assessment, 
and group-based or interactive learning. How-
ever, we find no evidence to suggest that these 
strategies have an effect on grades in subse-
quent courses for the average student. Further-
more, we find some evidence to suggest that 
first-generation college students benefit 
uniquely from exposure to frequent assessment 
and highly interactive instructional strategies.

Our findings also provide insights into the 
relation between instructional practices and 
students’ odds of progressing to subsequent 
courses in the STEM sequence. Although we 
are unable to estimate fixed-effects models on 
course progress, our multivariate models indi-
cate that students exposed to frequent assess-
ment and group-based or interactive learning 
are less likely to progress to the next course in 
the series than their peers in more traditional 
lecture classes. This finding raises important 
questions regarding the implications of prom-
ising instructional practices, implemented at 
scale, for improving student persistence in 
STEM fields. Future analyses should address 
the consequences of instructional practices for 
student persistence more extensively. Our find-
ings—that the same instructional practices 
that predict high grades in a given course do 
not predict enrollment and success in subse-
quent courses—somewhat parallel Carrell and 
West’s findings (2008). This study, which ran-
domly assigned students to core courses at the 
U.S. Air Force Academy, finds that students 
who performed well in their initial mathemat-
ics course performed significantly worse in the 
mandatory subsequent courses in math, sci-
ence, and engineering. Furthermore, they find 
that teacher effects are quite different between 

current and subsequent courses. Although stu-
dents get lower grades, on average, in courses 
with high-ranking, highly educated tenured in-
structors, these same instructor characteristics 
positively predict student performance in sub-
sequent courses.

However, two important caveats apply to 
these general findings. First, we find some 
evidence that two of the promising practices—
exposure to formative and summative assess-
ment and group-based or interactive instruc-
tional strategies—do benefit first-generation 
college students. These practices have a posi-
tive impact on grade in the next course in the 
STEM series. Given that first-generation stu-
dents disproportionately drop out of STEM, 
this finding can be valuable for mitigating this 
attrition rate. Because we found no evidence 
that promising practices have a negative impact 
on the general population but a positive one for 
first-generation students, this may be an im-
portant consideration in their adaptation.

Second, our observational data focus on the 
extent to which instructors use particular strat-
egies and not how well they implement thems. 
We suspect that this distinction is crucial. At 
UCI and in many other higher education set-
tings, instructors have a great deal of profes-
sional autonomy, receive little pedagogical 
training, and have few signals regarding the 
effectiveness of their instruction and few in-
centives to invest considerable time and en-
ergy to teaching. After observing each of this 
study’s courses, we conducted brief, informal 
interviews with each of the instructors we ob-
served. We learned that many dedicated in-
structors refrain from implementing the sorts 
of promising practices that we highlight in this 
paper, choosing to stick instead with tried and 
true instructional techniques. Meanwhile, 
other instructors struggle to implement highly 
touted “promising practices” in an effective 
manner. We believe that future research and 
instructional reform efforts should devote at-
tention to the processes through which in-
structors encounter and adopt promising in-
structional practices. In particular, we hope 
that the sorts of observational data our project 
has collected can help instructors reflect on 
their practices and learn from one another.

Third, UCI is a selective institution. At the 
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time of this study, to enroll in introductory 
chemistry, biology, and mathematics courses, 
UCI students must either score above 600 on 
the mathematics portion of the SAT or com-
plete a rigorous set of developmental math 
courses. Although our sample of UCI introduc-
tory STEM students is ethnically and econom-
ically diverse, these students are likely to be 
more motivated and academically engaged 
than their countparts nationwide. These char-
acteristics may blunt the relation between in-
struction and student learning, insofar as UCI 
students’ study skills and motivation can com-

pensate for courses with ineffective instruc-
tion. If true, it is possible that promising in-
structional practices have a larger impact 
among heterogeneous students enrolled in 
STEM courses at community colleges and 
other less selective colleges and universities, 
especially given that these colleges typically in-
clude more first-generation students who were 
found to benefit from the practices we ob-
served (Wolter et al. 2011). Future research 
needs to address the effects of these promising 
practices at scale in heterogeneous settings, 
such as community colleges.

Appendix A

Analyses of Full Sample
Table A1. Effects of Instruction for Full Sample

Bivariate 
+ Student  

Level Controls
+ High School 
Fixed Effects

Student Fixed 
Effects

Outcome: grade in observed course
Epistemology –0.006 –0.003 0.010 0.024*

(0.014) (0.013) (0.012) (0.011)
Assessment –0.023 –0.018 –0.013 0.048** 

(0.02) (0.017) (0.018) (0.017)
Interaction –0.055*** –0.030** –0.016 0.031** 

(0.013) (0.011) (0.011) (0.011)

N 11,348 11,347 11,346 4,744

Outcome: odds of progressing to next course
Epistemology –0.037 –0.046 — —

(0.028) (0.029)
Assessment –0.168*** –0.171*** — —

(0.041) (0.042)
Interaction –0.113*** –0.092*** — —

(0.026) (0.027)

N 11,803 11,493 — —

Outcome: grade in subsequent course
Epistemology –0.042** –0.046*** –0.038** –0.011

(0.015) (0.013) (0.014) (0.012)
Assessment –0.016 –0.012 –0.006 0.017

(0.021) (0.019) (0.021) (0.020)
Interaction –0.050*** –0.017 –0.001 0.020

(0.013) (0.012) (0.013) (0.013)

N 7,905 7,762 7,761 4,744

Source: Authors’ calculations. 
Note: Student fixed effects include only students who took three or more of the observed courses. Stan-
dard errors in parentheses. 
*p < .05; **p < .01; ***p < .001
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Appendix B

Results of Analyses of Individual Scale Items

Table B1. Effects of Statistically Significant Individual Items for Three Instructional Scales

Student
Fixed-Effects

Sample

Grade in observed course
Epistemology

Problem solving –0.072*
(0.021)

Real world examples 0.034** 
(0.013)

Big picture/ideas 0.073***
(0.021)

Assessment
Checking for understanding 0.085***

(0.019)
Interaction

Interactive lecture 0.067***
(0.015)

Grade in subsequent course
Epistemology

Problem solving 0.097**
(0.031)

N 4,744

Source: Author’s calculations.
Note: The items listed are individual components of the composite scales that were statisti-
cally significant. N represents all observations for 2,382 unique students.Standard errors in 
parentheses. 
*p < .05; **p < .01; ***p < .001

Table B2. Effects of Statistically Significant Individual Items for Three Instructional Scales

Bivariate 
+ Student Level  

Controls

Outcome: Odds of progressing to next course
Epistemology

Problem solving 0.302*** 0.182**
(0.066) (0.068)

N 11,494 11,493

Source: Author’s calculations.
Note: The items listed are individual components of the composite scales that were statistically signifi-
cant. Student fixed effects sample does not have enough variation to estimate odds of progressing. 
Standard errors in parentheses. 
*p < .05; **p < .01; ***p < .001
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Table C2. Correlation Matrix for Assessment Scale

 
Assess-
ment1

Assess-
ment2

Check 
Under-

standing1

Check 
Under-

standing2
Modify 

Lesson1
Modify 

Lesson2

Number 
Click  
Ques

1

Number 
Click  
Ques

2

Assessment1 1.00
Assessment2 0.00 1.00
Check understanding1 0.18 0.40 1.00
Check understanding2 0.12 0.42 0.46 1.00
Modify lesson1 –0.05 0.13 0.62 0.36 1.00
Modify lesson2 0.19 0.28 0.38 0.72 0.28 1.00
Number click ques1 0.17 0.17 0.58 0.27 0.41 0.26 1.00
Number click ques2 0.05 0.51 0.63 0.67 0.37 0.67 0.57 1.00

Source: Authors’ calculations. 
Note: Assessments, such as quizzes, were rarely observed.

Table C3. Correlation Matrix for Interaction Scale

 
Group 

1
Group 

2
Interactive 

1
Interactive 

2
Desk Work

1
Desk Work

2

Group1 1.00
Group2 0.54 1.00
Interactive1 0.09 0.26 1.00
Interactive2 0.03 0.20 0.27 1.00
Desk work1 0.30 0.27 0.29 0.37 1.00
Desk work2 -0.07 -0.06 0.12 0.14 0.38 1.00

Source: Authors’ calculations. 
Note: The interactive variable is on a scale of 0 to 3, thus one would imagine variation in the interaction 
between pre and post.

Appendix C

Correlations of Pre- and Post- Scale Items
Table C1. Correlation Matrix for Epistemology Scale

Problem 
Solving1

Problem 
Solving2

Real 
World1

Real 
World2

Prior 
Course1

Prior 
Course2

Big 
Picture1

Big 
Picture2

Test
1

Test
2

Problem solving1 1.00
Problem solving2 0.51 1.00
Real world1 –0.34 –0.32 1.00
Real world2 –0.34 –0.28 0.67 1.00
Prior course1 –0.06 –0.26 0.00 –0.03 1.00
Prior course2 –0.04 0.36 0.15 0.09 –0.06 1.00
Big picture1 0.06 0.11 0.03 0.06 0.33 0.01 1.00
Big picture2 –0.05 0.21 0.04 0.12 –0.05 0.09 0.18 1.00
Test1 0.04 0.27 0.07 0.06 0.03 0.20 0.21 0.14 1.00
Test2 0.11 0.22 0.13 0.05 0.05 0.05 0.07 0.40 0.47 1.00

Source: Authors’ calculations. 
Note: Instructors seem to mention prior course content at the beginning of the term and big picture/
ideas at the end of the term.
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