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Understanding the implications of algorithmic trading calls for modeling financial markets at a level of fidel-
ity that often precludes analytic solution. We describe how agent-based simulation modeling can be com-
bined with game-theoretic reasoning to examine the effects of market variables on outcomes of interest. The 
approach is illustrated in a basic model where investors trade a single security through a continuous double 
auction mechanism. Our results demonstrate the feasibility of the approach, and raise questions about the 
use of spreads as a proxy for trading cost and welfare.
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Program trading has been a reality for many 
years now, and the pervasiveness, speed, and 
autonomy of trading algorithms continue to 
reach new heights. Algorithmic strategies de-
signed to respond to information within a few 
milliseconds or less are now widely deployed. 
The blink of a human eye, normally lasting 
over 0.3 seconds, may span hundreds of rounds 
of high-frequency trading (HFT). Although pre-
cise definitions or prevalence measurements 
of HFT are hard to come by, typical estimates 
agree that HFT accounts for over half of trad-
ing volume on U.S. equities and futures mar-
kets, and is increasingly common on currency 
exchange and fixed-income markets (Cardella 
et al. 2014).

With the ascent of algorithmic trading and 
HFT has come no small amount of public con-
troversy, for example, about whether this prac-
tice contributed to the “flash crash” of May 6, 
2010. Despite an abundance of available mar-
ket data, understanding this episode is chal-

lenging because of the multiplicity of actors 
and complexity of interactions. This is re-
flected in necessarily complicated and nu-
anced characterizations of the role of HFT, as 
in the conclusion by Andrei A. Kirilenko et al. 
(2014) that HFT was not the proximate cause, 
yet HFT presence shaped the environmental 
conditions for the crash and accelerated price 
movements in response to the triggering 
event.

One way that prevalent algorithmic trading 
can shape the trading environment is through 
strategies that quickly withdraw liquidity when 
observations indicate a situation outside the 
normal operating conditions. This response is 
quite rational, given that underlying algo-
rithms were derived and vetted on the basis of 
data from historical experience. When evi-
dence presents that the current situation devi-
ates qualitatively from historical conditions, 
the safe move is to turn off the algorithm. Of 
course, this is precisely the situation when the 
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market is most in need of liquidity, so if such 
algorithms control the main liquidity sources 
this poses a clear stability risk.

Because the markets recovered minutes af-
ter they plunged, the May 2010 flash crash 
caused no general economic damage beyond 
harm to specific investors and traders caught 
in the wave—save perhaps the intangible ero-
sion of confidence in the markets. The quick 
recovery is as mysterious as the precipitous 
drop, and there is no assurance that we will 
fare as well in the next flash-crash event. This 
next event is seemingly inevitable, as mecha-
nisms in place to act as circuit breakers have 
limited ability to prevent or ameliorate them 
(Subrahmanyam 2013), and no other measures 
have qualitatively changed the general condi-
tions of our financial markets. Subsequent 
smaller flash crashes in other financial assets 
(U.S. Treasury bonds in October 2014, U.S. dol-
lars in March 2015) remind us that the prospect 
looms, and with it potential contagion across 
exchanges and asset classes, possibly trigger-
ing generalized panic impinging on the real 
economy.

The spotlight on HFT grew particularly in-
tense in 2014 with the publication of Flash 
Boys, an engaging account by Michael Lewis 
(2014) of strategies employed by HFT firms to 
obtain and exploit speed advantages. Billions 
of dollars have been invested in new fiber-
optic, microwave, and even laser-based com-
munication networks, in the effort to shave 
milliseconds or microseconds off the informa-
tion latency: the time it takes to transmit in-
formation across exchanges. To compete in 
this latency arms race firms spend additional 
billions on specialized hardware, co-location 
with exchanges, and development of stream-
lined software—possibly omitting error checks 
and other safety-enhancing features in the 
quest for ultimate speed.

Much of the debate about HFT revolves 
around the ramifications for real and perceived 
transparency and fairness of market opera-
tions; see, for example, criticisms by Haim 
Bodek (2013) about the proliferation of special 
order types catering to HFT strategies. This 
specific issue drew the attention of regulators 
at the U.S. Securities and Exchange Commis-
sion, who in January 2015 fined the exchange 

operator Direct Edge $14M for insufficient 
transparency about the availability and opera-
tion of special order types (Beeson 2015).

Some observers conclude that the state of 
U.S. equity trading markets is fundamentally 
broken (Arnuk and Saluzzi 2012) and call for 
sweeping reform. Others suggest that the ap-
parent downsides of HFT are tolerable relative 
to the claimed beneficial effects of modern 
electronic trading. Some of the disconnects in 
this debate can be attributed to confounding 
qualitatively distinct forms of HFT, conflicting 
assumptions about market organization, or in-
formation hiding and obfuscation to protect 
proprietary interests.

Such issues can be addressed by careful re-
search conducted in the public domain. Much 
of the finance literature on high-frequency 
trading (HFT) takes an empirical approach, 
and has come to mixed conclusions on the ef-
fects of HFT on overall market quality. For ex-
ample, in a survey discussing the strategies, 
benefits, and costs of HFT, Charles M. Jones 
(2013) points to the positive role of HFT firms 
in market making and providing liquidity 
(Hendershott, Jones, and Menkveld 2011). The 
liquidity provided by algorithmic market mak-
ers, however, may be more erratic at high fre-
quencies, and may be accompanied by in-
creased adverse selection (Menkveld 2014). The 
effects of algorithmic trading operate along 
multiple pathways, with conflicting implica-
tions for market performance. As a result, 
most detached and deliberate commentators 
agree that uncertainty and concern about the 
ramifications of HFT, both potential and real-
ized, are justified.

These uncertainties are difficult to resolve, 
in part because the factors at play in modern 
high-frequency trading are unprecedented. 
The most important new features in our view 
are the two following factors:

1.	 The very speed of operation renders details 
of internal market operations—especially 
the structure of communication channels 
and information—systematically relevant 
to market performance. In particular, the 
latencies (time lags) between market events 
(transactions, price updates, order submis-
sions) and the point in time when various 
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actors find out about these events become 
pivotal, and even the smallest differen-
tial latency can significantly affect trading 
outcomes.

2. The autonomy and adaptivity of algorithmic 
trading strategies takes them out of the 
scope of direct human control, and makes 
it challenging to understand how they will 
perform in unanticipated circumstances. 
The challenges are exacerbated by the in-
creasing use of sophisticated machine 
learning techniques to derive trading strat-
egies, and the fundamental multi-agent na-
ture of the execution environment.

These two factors are closely interrelated, as 
autonomy is necessary for operation at super-
human speed. Some issues, such as interac-
tions among adaptive and data-driven strate-
gies, apply to algorithmic trading even when it 
is not conducted at high frequency (Easley, 
López de Prado, and O’Hara 2012).

In this article we outline a computational 
approach to analysis of financial markets that 
offers the fidelity needed to capture complex 
algorithmic trading environments yet is ame-
nable to strategic reasoning based on game-
theoretic principles. Following background on 
simulation modeling of financial markets, we 
present a simple yet realistic model environ-
ment and illustrate the approach for game-
theoretic selection of trading strategies and 
reasoning about the effects of market condi-
tions through equilibrium comparisons. Our 
results provide evidence for several proposi-
tions relevant to market performance and how 
it is assessed. Key findings include:

•	 Modeling trader patience in terms of the 
time horizon they are willing to monitor 
and reenter markets, we find robustly that 
patient traders are able to achieve greater 
gains from trade, up to essentially full effi-
ciency with sufficient horizon.

•	 All else equal, more frequent market reen-
try and reduced fundamental volatility in-
crease welfare.

•	 The common use of quoted or effective 
spreads as a proxy for welfare is not a reli-

able guide for comparing market perfor-
mance.

Simul ation Modeling of  
Financial Markets
Most of the finance community’s prior re-
search on HFT takes an empirical approach, 
employing available order, quote, and transac-
tion data streams to measure market activity 
and relate relevant variables. This has often 
yielded great insight and represents an essen-
tial form of inquiry. Analysis of available data 
is ultimately limited, however, with respect to 
counterfactual questions, such as the response 
of financial markets to rarely occurring shocks 
or the effects of alternative market rules and 
regulations. Answering such questions inher-
ently requires models that incorporate causal 
premises, specifically, assumptions as to how 
trading behavior is shaped by environmental 
conditions.

Theoretical models can support such infer-
ence, and these also represent an important 
resource from the finance research literature. 
Trading in markets can be formulated as a 
game, and game-theoretic equilibrium con-
cepts can be employed to characterize behavior 
in markets by rational agents. However, model-
ing algorithmic trading entails accommodat-
ing complex information and fine-grained dy-
namics, which often renders game-theoretic 
reasoning analytically intractable.

An alternative, computational, approach is 
to model financial markets in simulation. Sim-
ulation can faithfully capture complex market 
microstructure and trading interactions at ar-
bitrarily fine degrees of temporal granularity. 
Algorithmic and other traders are cast as 
agents, with various objectives and informa-
tion sources, and available actions as dictated 
by market rules. This approach, generally 
known as agent-based modeling (ABM), ana-
lyzes a complex social system through simula-
tion of fine-grained interactions among the 
constituent decisionmakers (the agents), de-
scribed and implemented as (usually simple) 
computer programs. ABM researchers in the 
social sciences typically justify adopting the 
agent-based approach on the basis of tractabil-
ity, or avoiding restrictive assumptions about 
rationality or other characteristics (Tesfatsion 
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2006). Richard Bookstaber (2012) invokes these 
arguments and others in expressly advocating 
the development of agent-based models for in-
vestigating threats to financial stability.

ABM applications to financial trading date 
back to the 1990s, notable early models includ-
ing those by Moshe Levy, Haim Levy, and Sorin 
Solomon (1994) and the Santa Fe Artificial 
Stock Market (Arthur et al. 1997). Agent-based 
financial models facilitate consideration of 
heterogeneous agent types (Boswijk et al. 
2007), and multiple forms of learning (LeBaron 
2011). Researchers have employed ABMs to 
shed light on central issues in today’s financial 
markets, such as the impact of a transaction 
tax (Fricke and Lux 2015), and conditions that 
can produce instabilities reminiscent of the 
2010 flash crash (Lee, Cheng, and Koh 2011; 
Paddrik et al. 2012).

In our own previous work we have used 
agent-based simulation of financial markets to 
model a variety of trading scenarios. We focus 
on the impact of algorithmic trading on alloc-
ative efficiency (social welfare), which is a mea-
sure of how well markets distribute resources 
(in this context, financial securities) to market 
participants. Greater efficiency means im-
provements (in aggregate) in investors’ gains 
from trading.

In one study, we investigated the effect of 
latency arbitrage, an HFT strategy that exploits 
speed advantages in identifying price dispari-
ties across fragmented markets (Wah and Well-
man 2013). We found that latency arbitrage 
harms market efficiency, not even counting the 
costs of the latency arms race. We proposed 
that this arms race can be eliminated by replac-
ing continuous-time trading with frequent-call 
markets, a mechanism whereby orders accu-
mulate and are matched periodically, for ex-
ample, once per second. Frequent-call markets 
neutralize tiny speed advantages (Budish, 
Cramton, and Shim 2015) and can improve 
market efficiency in many circumstances.

One of our recent studies examines the wel-
fare effects of market making, finding that 
market makers generally improve efficiency, 
but provide benefits to investors only when the 
investors are sufficiently impatient (Wah and 
Wellman 2015). The model we present here fol-
lows the configuration of this study and re-

ports an extended analysis of trading strategies 
(without the market makers) explored there.

Securit y Tr ading Model
Our analysis focuses on a single security traded 
in a two-sided market. Though the model is 
simple, it captures key characteristics of real-
world market mechanisms and trading behav-
ior. Here we present a basic description of mar-
ket operation, and the objectives and strategies 
of traders. The appendix provides a more de-
tailed mathematical description.

The market operates over a finite time ho-
rizon, which we call T. Agents enter and reenter 
the market at random intervals to trade. On 
each arrival these traders submit a limit order 
to the market (replacing their previous order, 
if any), indicating the price at which they are 
willing to buy or sell a single unit of the secu-
rity.

The market mechanism is a continuous 
double auction (CDA) (Friedman 1993), which 
means that a new buy or sell order transacts 
immediately whenever it matches an existing 
order in the market. The trade executes at the 
price of the incumbent order. If an order does 
not match, it is added to the CDA’s order book. 
The CDA maintains price quotes reflecting the 
best outstanding orders. These quotes com-
prise two parts: a bid quote BID reflects the 
highest current buy offer, and ask quote ASK 
the lowest current offer to sell.

The market environment is populated by a 
set of traders, representing investors. Each in-
vestor has an individual valuation for the secu-
rity made up of private and common compo-
nents. The common component is represented 
by a fundamental value, which can be viewed 
as the intrinsic value of the security. This fun-
damental value varies over time according to a 
stochastic process.

The private component of value is a specific 
agent’s reason for trading. For example, an 
agent may have positive value for a security 
that complements its portfolio (for example, it 
hedges other risk), and negative value for un-
diversified risk. Similarly, the need for savings 
or liquidity is reflected in the private value.

The common and private components are 
effectively added together to determine the 
agent’s valuation of the security. Agents accrue 
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private value on each transaction, and at the 
end of the trading horizon evaluate their ac-
cumulated inventory on the basis of the end-
time fundamental.

Given a market mechanism and valuation 
model, investors pursue their trading objec-
tives by executing a trading strategy in that en-
vironment. As noted, we assume that traders 
arrive stochastically at the market over a time 
horizon, and at each arrival have the opportu-
nity to submit a limit order to buy or sell a 
single unit of the security. The strategy defines 
how this order is generated, on the basis of 
price quotes and current holdings.

Though the CDA market mechanism and 
environment as described here are relatively 
simple, the associated bidding game is quite 
complex, owing to the incompleteness of in-
formation (private valuations) and the dynam-
ics of arrivals and repeated trading. No analytic 
solution—nor any constructive theoretical 
characterization—is known for this or similar 
CDA games, and so the literature has generally 
relied on simulation studies. Many previous 
works have explored CDA bidding strategies 
(Das et al. 2001; Friedman 1993; Wellman 2011), 
so there is a body of ideas to work with. Many 
of the proposed solutions are variations of the 
so-called zero intelligence (ZI) family of bid-
ding strategies (Gode and Sunder 1993), and 
that is the class of approaches we consider 
here.

In the ZI bidding strategy, agents determine 
an amount of surplus to ask for, and submit a 
corresponding limit order. The strategy param-
eters Rmin and Rmax (0 ≤ Rmin ≤ Rmax) govern the 
range of surplus requests. Our extended ver-
sion of ZI employs a third parameter, η ∊ [0,1], 
which is a threshold determining whether to 
just take the currently available surplus based 
on the price quotes. The details of our strategy 
implementation are provided in the appendix.

Although ZI is quite simplistic as a trading 
strategy, it does reflect cognizance of com-
mon and private value components, and 
through setting of the strategic parameters 
(Rmin, Rmax, η) it accommodates a spectrum of 
surplus-demanding behavior. The most effec-
tive settings of these parameters vary depend-
ing on the environment (such as number of 
other traders, valuation distributions, time ho-

rizon, arrival rate) and the strategies employed 
by other traders. Any conclusions for market 
performance, therefore, are sensitive to choice 
of these ZI parameters. We have developed a 
game-theoretic process for choosing strategic 
parameters in simulation models, described in 
detail in the next section.

Empirical Game-Theoretic 
Analysis
A financial market simulation model provides 
a way for an experimenter to directly answer 
questions of the form “What happens when 
the trading strategies <fill in strategy set> inter-
act in environment <fill in environment specifi-
cation>?” Choice of environment specification 
is driven by the target subject of study, and may 
be informed by existing models and data. The 
choice of strategies, however, is up to the mar-
ket participants, and since strategies are not 
generally observable in market data, the exper-
imenter must consider how traders would be 
likely to act in a given market situation. The 
conventional economic assumption is that 
traders rationally pursue their objectives, and 
the standard economic approach to strategy 
choice relies on reasoning based on rationality 
criteria.

The empirical game-theoretic analysis 
(EGTA) approach incorporates such reasoning 
in a simulation-based framework. Figure 1 il-
lustrates how EGTA generates a game model 
from financial-market simulations. First, we 
configure the financial-market simulator on 
the basis of the market mechanisms (number 
of markets, continuous versus periodic clear-
ing, quoting policies), environmental condi-
tions (numbers and types of traders, commu-
nication latencies), and agent valuations 
(fundamental process and private component 
distributions) we wish to study. These configu-
rations may have both structural and paramet-
ric elements. For example, we used this simu-
lator to investigate latency arbitrage, an HFT 
tactic that exploits speed advantage to profit 
in fragmented markets. Our study of latency 
arbitrage (Wah and Wellman, 2013) was based 
on a two-market model, with individual-market 
and global public price quotes (the national 
best bid and offer, or NBBO) available to regu-
lar and high-frequency traders at differential 
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latency. Given this structure, we then varied 
the latency parameter to evaluate its effect on 
market outcomes. That study also compared 
to single-market models, employing CDA or 
call-market clearing mechanisms.

The simulator configuration includes a 
specification of the numbers of players in var-
ious roles. Each role is associated with a set of 
available strategies. Within each role, players 
are treated as ex ante symmetric. (This is with-
out loss of generality, as we can always associ-
ate a unique role with each player.) In our study 
of market making, for example, there were two 
roles: background investor and market maker. 
In the current study, we consider only the in-
vestor role. The strategy set is the family of ZI 
bidders defined earlier.

Once configured, we can feed into the mar-
ket simulator a strategy profile, defined as an 
assignment of strategies to each player. In our 
case, assigning a strategy means assigning the 
ZI parameters (Rmin, Rmax, η) for each trader. 
Each simulation run produces an outcome (set 
of trades), which in turn defines a net surplus 
for each trader (value of final holdings minus 
cash flow). This can be interpreted as the 
agent’s payoff for that run of the market game. 
In general, given the stochastic nature of the 
market simulation (random draws of valua-
tions, fundamental time series, agent arrival 
patterns), we require many runs to yield accu-
rate estimates of payoffs for any given strategy 
profile.

To perform EGTA of a particular scenario, 
we evaluate a large number of strategy profiles 

in this manner, collecting the estimated pay-
offs in an outcome database. From this data 
we then induce a game model. This game 
model may generalize to nonsimulated profiles 
through regression (Vorobeychik, Wellman, 
and Singh 2007); however, in many cases (such 
as this study) we generate an incomplete game 
model that includes payoff estimates only for 
simulated profiles.

Given a game model, we can perform any of 
the usual game-theoretic analysis operations, 
for example, computing Nash equilibrium 
(NE). In our study, we focus on identifying sym-
metric mixed-strategy NE. Given a set of evalu-
ated profiles, our algorithm starts by finding 
the maximal complete subgames (henceforth 
referred to as subgames): sets of strategies 
such that all profiles are evaluated. For each 
subgame, we compute subgame equilibria by 
the replicator dynamics algorithm (Gintis 
2000), which starts from a particular probabil-
ity distribution over strategies, then increases 
the probability of those strategies that perform 
better than average. We run this replicator dy-
namics method initialized at a diverse set of 
points in the simplex, then test whether these 
subgame equilibria are equilibria in the full 
game by evaluating all deviations outside the 
subgame.

In principle, the EGTA approach could ap-
ply to a game of any size. In practice, we are 
limited by the computation available for simu-
lation, which is proportional to the number of 
profiles evaluated. Financial markets often in-
volve a large number of traders, and there is a 

Figure 1. Empirical Game-Theoretic Analysis

Source: Authors’ compilation.
Note: Simulating a large number of strategy profiles produces data used to induce a game-theoretic 
model.
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large space of possible strategies. Even if we 
restrict attention to ZI strategies, there is a 
three-dimensional parametric space of strat-
egy settings. Let N denote the number of trad-
ers, and S the number of strategies. In this 
study, we investigate markets with N = 25 and 
N = 66, and consider S = 9 distinct settings for 
the ZI strategy. A symmetric game has

( )N – S + 1
N

distinct strategy profiles (that is, the number 
of different ways of drawing N items from  
N – S + 1 candidates), and so even games of this 
modest size cannot be explored exhaustively. 
For example, with N = 25 and S = 9, the number 
of profiles is 13.9 million.

To enable analysis of games at this scale, we 
employ an approximation technique called 
deviation-preserving reduction (DPR) (Wieden-
beck and Wellman 2012). DPR approximates an 
N-player game by a smaller k-player game with 
the same strategy set. The method estimates 
payoffs in the reduced game based on a map-
ping from select profiles in the full game. For 
example, with N = 25 and k = 5, the payoff to 
the player playing strategy a in the reduced-
game profile (a, b, c, d, d) would be obtained 
by simulating a 25-player profile where one 
agent plays a and the other 24 are divided 
across the remaining strategies as follows: 6 
each play b and c, and 12 play d. This reduction 
is termed “deviation-preserving” because it ac-
curately reflects the first player’s relative pay-
offs for playing alternative strategies in this 
context. It is still an approximation, however, 
because the other players are treated as aggre-
gates. This technique has been shown to pro-
duce good approximations for purposes of 
equilibrium identification in a variety of large 
games. In this study, we employ 5-player reduc-
tions for the N = 25 cases, and 6-player reduc-
tions for N = 66.

E xperimental Setup
The experiments reported here elaborate the 
analysis of trading environments investigated 
in our prior work (Wah and Wellman 2015), fo-
cusing on the games with no market maker 
present. Traders follow the ZI strategy de-

scribed, with settings (Rmin, Rmax, η) selected 
from the following set of thirteen triples:

{ (0,65,0.8), (0,125,0.8), (0,125,1), (0,250,0.8), 
(0,250,1), (0,500,1), (250,500,1), (0,1000,0.8), 
(0,1000,1), (500,1000,0.4), (0,1500,0.6), 
(1000,2000,0.4), (0,2500,1) }

This set was determined in a fairly ad hoc 
manner. We seeded it with all of the η = 1 strat-
egies above, then extended it to include some 
η = 1 cases based on finding improvements 
from initial equilibrium candidates. We also 
tried some strategies with Rmin ∊ {2500,5000} and 
Rmax ∊ {10000,15000}, but these never appeared in 
equilibrium so were discarded.

We consider three instances of the market 
environment, labeled A, B, and C. All three as-
sign traders a private valuation generated with 
variance parameter σ2

PV = 5 × 106 and qmax = 10. 
(See the appendix for definitions of these and 
other parameters.) The global fundamental 
has a mean value r = 100000 and evolves with 
mean reversion κ = 0.05. The environment dif-
ferences are focused on two parameters:

•	 Agent reentry rate: λ = 0.0005 (environment 
A) or λ = 0.005 (environments B and C)

•	 Fundamental shock variance: σ2
s = 106 (envi-

ronments A and B) or σ2
s = 5 × 105  (environ-

ment C)

For each environment, we consider three dif-
ferent time horizons T (in 1,000s) and two set-
tings for number of traders N. For N = 25 we 
considered an additional horizon T = 24. Thus 
we explored a total of 21 games using the EGTA 
approach. We label each game according to the 
environment (A, B, C) and time horizon T, 
where T ∊ {1, 4, 12, 24}; for example, B12 is envi-
ronment B with time horizon 12.

Results
To analyze a particular game configuration we 
perform a systematic search, evaluating strat-
egy profiles through simulation with the goal 
of identifying equilibria. Our search process 
starts by considering each ZI strategy in self-
play—the nine pure symmetric profiles where 
every agent plays the given strategy. We then 
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iteratively generate additional profiles to simu-
late according to the following criteria:

•	 For any subgame equilibrium that is not re-
futed in the full game, evaluate all devia-
tions outside the subgame.

•	 Extend a refuted subgame equilibrium by 
adding the best response strategy to the set 
of strategies in that equilibrium profile’s 
support.

Note that deviations and subgame profiles are 
selected on the basis of the reduced 5- or 
6-player games defined by our DPR approxima-
tion. The payoffs for these reduced games are 
estimated based on simulation results from 
corresponding full-game profiles.

For each of the 21 games analyzed, this 
process succeeded in identifying at least one 
and up to three distinct symmetric equilibria. 
This typically required evaluating 1,000 or 
2,000 full-game profiles, with an actual range 
of 553 to 4,167. Each profile evaluated was sim-
ulated at least 20,000 times. Overall, the com-
putation deployed for this study occupied doz-
ens of cores on a large-scale computing cluster 
for much of the time over a period of several 
months.

A summary of the equilibria across environ-

ments is presented in figure 2. For each market 
size (25, 66) and each environment (A, B, C) we 
plot a series of points corresponding to the five 
time horizons T considered. Each point sum-
marizes the equilibrium ZI parameters using 
the average of surplus-request midpoints,  
Rmid = (Rmin + Rmax)/2, with the average weighted 
by probability in the equilibrium profile. For 
games with multiple equilibria, we display the 
range of Rmid values using error bars.

The Rmid statistic for a profile represents the 
average surplus requested in a trader limit or-
der, but only approximately, as it ignores the 
effect of the quote threshold parameter η. Fig-
ure 2 suggests some general trends in this sta-
tistic, but we are reluctant to draw strong con-
clusions, given the roughness of this measure 
and the inconsistency in the observed trends. 
Nevertheless, we do generally see that the thin-
ner markets (N = 25) have higher surplus re-
quests, and that there is some tendency for 
these requests to decrease with time horizon, 
particularly for environment A.

Perhaps the most salient outcome variable 
is market efficiency, which we measure by to-
tal surplus. For each equilibrium we evaluated 
total surplus from 10,000 sample runs over 
the full-game mixed profile. Figure 3 displays 
the market efficiency exhibited in equilibrium 
across our 21 games. For this variable, the re-

Figure 2. Median Rmid (the Midpoint of the ZI Range [Rmin, Rmax]) Value for Equilibria in the Three 
Environments A, B, and C, for N = 66 and N = 25 

Source: Authors’ simulation results.
Note: The X-axis is the simulation length T (in 1000s). The error bars for each point indicate the mini-
mum and maximum Rmid values for equilibria in a market configuration.
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lationships are quite apparent. Welfare gener-
ally increases with time horizon. The reason 
is that with longer horizons, traders have 
more reentries and thus greater opportunity 
to find mutually beneficial trades. With 
enough time, the ZI traders are able to achieve 
a high fraction of full efficiency in equilib-
rium.

It is also apparent from figure 3 that envi-
ronments with more frequent trader entries (B 
and C compared to A) have higher surplus, for 
any given horizon. This holds for the same rea-
son that extending horizon improves effi-
ciency. Closer inspection of the figure reveals 
that when holding arrival rate and horizon 
fixed, for N = 66, reducing fundamental volatil-
ity (moving from environment B to C) increases 
efficiency to a small but consistent degree. It 
seems that with thick markets, high variance 
on the fundamental often leads to extramar-
ginal trades, which then require additional en-
tries to correct.

Inspection of the number of trades pro-
duced in equilibrium (figure 4) is also illumi-
nating. A few equilibrium instances generate 
high efficiency but produce more trades than 

optimal, indicating that these runs involve 
agents who make trades and reverse them on 
subsequent entries.

Spre ads and Market Efficiency
The final question we examine with data from 
our EGTA study concerns the reliability of 
spreads as a proxy for market efficiency or 
welfare. True transaction cost, or the differ-
ence between the price of execution and the 
true value of the security, is a measure of the 
net change in welfare of market participants. 
When welfare is not directly observable, as is 
generally the case for real-world data, proxy 
measures for transaction costs can be em-
ployed to estimate changes in welfare (Goet-
tler et al. 2005). Estimation of the cost of trad-
ing relies on the intuition that in the absence 
of execution costs, transactions would occur 
at the underlying value of the security. As 
such, the difference between trade price and 
any proxy for the value of the security gives an 
estimate of the cost of execution (Bessem-
binder and Venkataraman 2010). There are 
multiple ways to estimate these execution 
costs. The simplest of these is the quoted 

Figure 3. Comparison of Welfare (Total Surplus) Across Thirty Game Environments 

Source: Authors’ simulation results.
Note: The top dotted line is the optimal social welfare available with sixty-six traders (44,155); the bot-
tom dotted line is the optimal welfare available with twenty-five traders (16,306). Error bars indicate 
the minimum and maximum values for equilibria in a game.
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spread, which is defined at a particular time 
point as the difference between the BID and 
ASK quotes. We summarize quoted spread for 
a scenario run as the median spread over all 
time points. Figure 5 presents statistics on 
quoted spreads for equilibrium trading in our 
21 game configurations. As one would expect, 
spreads are always greater in thinner markets, 
all else equal. We also tend to find smaller 
spreads in the scenarios exhibiting greatest 
surplus (compare figure 3), although this cor-
respondence is rough and inconsistent at 
best.

If quotes vary significantly over time, aggre-
gating quoted spreads over all time points may 
not accurately reflect trading costs. An alterna-
tive is the effective spread, which focuses on 
spreads in effect at the time of actual trades 
(Bessembinder 2003; Madhavan et al. 2002).1 

Specifically, our aggregate measure of effective 
spread takes the mean BID-ASK difference over 
all times when a trade occurs. These effective 
spread values for the equilibria found in each 
environment are shown in figure 6.

We see that effective spreads are sometimes 
substantially lower than the quoted spreads 
and never vice versa (figure 5), reflecting the 
fact that a new limit order is more likely to 
match at times when the spread is tight. Nev-
ertheless, quoted and effective spreads are 
highly correlated, suggesting that quoted 
spreads can serve as a predictor for effective 
spreads. As for quoted spreads, tighter effec-
tive spreads often correspond to increased wel-
fare in the corresponding environment, but 
this is not consistently the case.

Such inconsistency may not be surprising, 
given that other factors also vary systematically 

Source: Authors’ simulation results.
Note: The dotted lines represent the average number of trades required for socially optimal allocations, 
with N = 66 (115 trades, top dotted line) and N = 25 (43, bottom dotted line). Error bars indicate the 
minimum and maximum values for equilibria in a game.

Figure 4. Average Number of Trades Generated in Equilibrium, Across Twenty-One Game 
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1. Another spread metric is the realized spread, which samples the spread n periods after a trade, as a proxy for 
the post-trade value of the security, to capture the price impact of the trade or to capture how the market has 
incorporated the private information conveyed by the trade (Bessembinder and Venkataraman 2010). It is unclear, 
however, what time period n is appropriate in our market model. Exploratory measurements revealed that in our 
environments, realized spreads differ widely depending on the value of n selected; hence, we omit realized 
spreads from further discussion.
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Source: Authors’ simulation results.
Note: Error bars indicate the minimum and maximum values for equilibria in a game. 

Figure 5. Quoted Spread (Measured as the Median BID-ASK Difference over the Duration of the 
Simulation) for Twenty-One Game Environments
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Figure 6. Effective Spread (Measured as the Mean BID-ASK Difference over the Transaction Time 
Points) for Twenty-One Game Environments 

Source: Authors’ simulation results.
Note: Error bars indicate the minimum and maximum values for equilibria in a game.
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across game instances. We tested the corre-
spondence of spreads and welfare within 
games by examining cases of multiple equilib-
ria. Six of our games have multiple equilibria, 
and in only two (that is, one-third) does the 
ordering of quoted spread accord with the or-

dering of welfare. For effective spread, the cor-
respondence also holds in only two of six 
cases.

To further examine the efficacy of spread 
measures as a proxy for welfare, we simulate 
10,000 samples of five pure-strategy profiles for 
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N = 66 and N = 25 under fixed market configu-
ration (game B12). The strategies of these pro-
files all belong to the ZI family, with the follow-
ing ranges (η = 1 unless otherwise stated):

•	 B12a: ZI[0, 125] with η = 0.8

•	 B12b: ZI[0, 250]

•	 B12c: ZI[0, 1000]

•	 B12d: ZI[0, 2500].

•	 B12e: ZI[500, 1000] with η = 0.4

In each of these profiles, all N traders play the 
specified strategy. The surplus of each profile 
is shown in figure 7, and the corresponding 
spread measures are in figure 8. We measure 
quoted spread as a time series across the dura-
tion of the simulation and report the median 
spread, and we report effective spread as the 
mean over all transactions.

We find that for both populations, the sur-
plus is the lowest for profile B12e and is rela-
tively constant for profiles B12a to B12c. Both 
spread measures, in contrast, widen over the 
a-to-e range, which properly reflect the in-
crease in welfare from c to e, but fail to accu-
rately mirror the flat welfare rankings in pro-
files B12a to B12c. This is particularly true for 
quoted spread. Effective spread comes closer 
to matching the flat area overall surplus for 
N = 66, but its correspondence breaks down in 
the thinner market with 25 traders, for example 
in the increased spread from B12b to B12c.

As true value of the security is unobservable 
in real data, proxies such as quoted and effec-
tive spread may often be the best available pre-
dictors of transaction costs. However, accu-
rately computing effective spreads from real 
data is often difficult, as it is not always readily 
apparent from historical trade prices and 
quotes which price quote corresponds to a 
given transaction, especially when order-level 
data are not available. In addition, effective 
spread measures can be particularly sensitive 

Figure 7. Overall Surplus in Five Pure-Strategy 
Profiles for N = 66 and N = 25 in Game B12 

Source: Authors’ simulation results.
Note: The ZI strategies are written in the form 
[Rmin, Rmax; η]. 

0

10

20

30

40

50

[0,125;0.8]

[0,250]

[0,1000]

[0,2500]

[500,1000;0.4]

Su
rp

lu
s 

(T
ho

us
an

ds
)

N = 66 N = 25

ZI Strategy

Source: Authors’ simulation results.
Note: The ZI strategies are written in the form [Rmin, Rmax; η]. 

Figure 8. Quoted Spread and Effective Spread in Five Pure-Strategy Profiles for N = 66 and N = 25 in 
Game B12
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in electronic markets, with frequent quote up-
dates and more active trading (Piwowar and 
Wei 2006).

A more fundamental problem with effective 
spread, however, is that it was developed for 
intermediated markets, where prices are set by 
a middleman, such as a dealer. In a pure limit-
order market, prices are determined by arriv-
ing traders and thus are not necessarily equal 
to the expected value of the security. Ronald L. 
Goettler, Christine A. Parlour, and Uday Rajan 
(2005) demonstrate that the midpoint of the 
BID-ASK spread is not a good proxy for a secu-
rity’s true underlying value. Given that it em-
phasizes the surplus of the trade-initiating or-
der submitter and omits the surplus of the 
incumbent order submitter, effective spread is 
not a generally representative estimate of wel-
fare.

Conclusions
We have presented an approach to strategic 
reasoning, using agent-based simulation mod-
els, for application to understanding trading 
behavior in financial markets. Contrary to 
views often expressed by advocates (and re-
spectively, critics) of agent-based modeling and 
game-theoretic analysis, the two methods are 
actually quite complementary, together sup-
porting principled strategic analysis of com-
plex dynamic scenarios. We illustrated the ap-
proach by deriving and analyzing equilibrium 
trading strategies for a variety of continuous 
double auction scenarios, differing in number 
of traders, trading horizon, arrival rate, and 
fundamental volatility.

Our study confirms several expected rela-
tionships among market outcomes, and par-
ticularly underscores the importance of trader 
reentry in achieving efficient outcomes in con-
tinuous double auctions. Data from simula-
tions were also instrumental in demonstrating 
the limitations of relying on proxies such as 
price quotes for statistics of central interest, 
such as welfare.

The unobservability of key elements (strate-
gies, welfare) in empirical data provides a 
strong impetus behind the simulation ap-
proach to modeling financial markets. Our 
simulation studies of latency arbitrage and 
market making have shed light on the costs 

and benefits of such strategies, in terms of 
their effects on the welfare of investors. These 
works highlight the importance of distinguish-
ing among different roles of algorithmic trad-
ing, separating the deleterious practices (la-
tency arbitrage) from those that improve 
market performance (liquidity provision to im-
patient investors). This argues against broad-
brush regulatory policies that raise the costs 
of algorithmic trading across the board, in fa-
vor of more targeted interventions that deter 
the harmful forms of algorithmic trading with-
out unduly burdening beneficial practices.

Our ongoing research is applying the ap-
proach illustrated here to further key questions 
in the behavior of financial markets, for exam-
ple: comparing continuous and periodic trad-
ing rules, effects of competition among market 
makers, and adoption of alternative market 
mechanisms (Wah, Hurd, and Wellman 2015). 
Models combining rich simulation with game-
theoretic reasoning can play a constructive role 
in evaluating alternative market mechanisms 
and enhancing our understanding of the ef-
fects of algorithmic trading in a wide range of 
scenarios.

Appendix

Mathematical Model Formulation
In the Appendix we provide further technical 
details of our models of the market environ-
ment and agent trading strategies.

Market Operation and Agent Valuations
We model a single security traded in a two-
sided market. Prices are integers, which means 
they are discretized at a tick size of any desired 
granularity. Time is also defined on a discrete 
domain, with finite horizon T. Agents arrive to 
submit their limit orders according to a Pois-
son distribution, with a rate parameter λ defin-
ing the probability of arriving in each unit 
time. The market mechanism is a standard 
limit-order market, or continuous double auc-
tion (CDA).

Traders value the security on the basis of a 
common fundamental value, in combination 
with an individual-specific private value. We 
denote by rt the fundamental value for the se-
curity at time t. The fundamental time series 
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is generated by a mean-reverting stochastic 
process:

rt = max[0, κr + (1 – κ)rt–1  + ut].

Parameter κ ∊[1,0] specifies the degree to which 
the fundamental reverts back to the mean r, 
and parameter ut ~ N(0,σ2

s) is a random shock 
at time t.

The private valuation component for agent 
i is a vector

Θt = (θi
–qmax+1, . . . , θi

+1, . . . , θi
qmax),

where qmax > 0 is the maximum number of 
units an agent can hold (either long or short). 
Θt specifies the marginal private benefits to 
agent i of trading single units, according to i’s 
current net position. Element θi

q is the incre-
mental private benefit obtained from selling 
one unit of the security, given current position 
q, where positive (negative) q indicates a long 
(short) position. Similarly, θi

q+1 is the marginal 
private gain from buying an additional unit 
given current net position q. This representa-
tion is similar to the model of Goettler, Chris-
tine A. Parlour, and Uday Rajan (2009).

Agent i’s private valuation vector is gener-
ated by drawing 2 qmax values independently 
from a Gaussian distribution, N(0,σ2

PV). To en-
sure that the valuation reflects diminishing 
marginal utility, that is, θqʹ ≥ θq for all qʹ ≤ q, we 
sort the drawn values before assigning the vec-
tor Θi.

At the end of the trading horizon, an 
agent’s total value is the sum of private val-
ues accrued on each transaction, plus the 
worth of its final holdings evaluated at rT, the 
end-time fundamental value. Agent i’s valua-
tion vi(t) for the security at time t therefore 
depends on its current position qt and the 
value of the common fundamental at the end 
of the trading horizon:

	 vi(t) = rT + {	θi
qt+1	 if buying one unit

	 θi
qt	 if selling one unit

The surplus of a trade is the difference be-
tween valuation (including both common and 
private components) and transaction price. For 
a single-quantity limit order transacting at 

time t and price p, a buyer B obtains surplus 
vB(t) – p, whereas seller S obtains surplus 
p – vS(t). Since the price and fundamental 
terms cancel out in exchange, the total surplus 
achieved when B buys from S is θB

q(B)+1 – θS
q(S)+1, 

where q(i) denotes the pre-trade position of 
agent i.

Trading Strategies
An agent’s trading strategy governs how it gen-
erates a limit order each time it arrives to the 
market, as a function of its state and informa-
tion. To simplify the strategy structure, we as-
sume that the trader flips a coin on each arrival 
to decide whether its order on that round will 
be to buy or to sell. As a result, agent i’s deci-
sion boils down a price for its new limit order, 
as a function of its valuation vector Θi, current 
holdings q(i), and its history of market obser-
vations (transactions and price quotes).

In the zero intelligence bidding strategy, 
agents bid for a randomly determined amount 
of surplus. Our extended version of ZI employs 
three parameters: Rmin and Rmax (0 ≤ Rmin ≤ Rmax) 
define the range of surplus requests, and  
η ∊[1,0] is a threshold for taking the currently 
available surplus. Specifically, a ZI trader i con-
structs its bid as follows:

1.	 Assess its valuation vi(t) at the time of mar-
ket entry t, using an estimate r̂t  of the end-
time fundamental rT. The estimate is simply 
an adjustment of the current fundamental 
rt, accounting for mean reversion:

rt̂ = (1 – (1 – κ)T–t)r + (1 – κ)T–trt

2.	 Determine its requested surplus s, by draw-
ing uniformly from the interval [Rmin, Rmax].

3.	 If the surplus available at the current price 
quote is at least ηs, then submit an offer at 
the quoted price. Otherwise submit a limit 
order requesting surplus s. For instance, if 
the agent is buying, its bid price is given by:

	  ASKt
	  if ASKt ≤ vi(t) – ηs

	 { vi(t) – s 	 otherwise

Note that a trader with η = 0 accepts any profit-
able quote, and one with η = 1 bids the same, 
regardless of the current quote.
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For example, consider a trader with valua-
tion v applying a ZI strategy with parameters 
Rmin = 0, Rmax = 1000, and η = 0.6. On entering 
the market, it first flips a coin to decide whether 
to buy or sell. Supposing the coin flip dictates 
BUY, it then draws a random surplus request 
s ~ U[0,1000], which for example yields s = 700. 
It therefore aims to buy at a price 700 below its 
valuation. If it can buy right now at a price of 
700η = 420 less than v (that is, if ASK ≤ v – 420), 
however, it submits a price at the current mar-
ket value. Otherwise, it submits a buy order 
with price v – 700.
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